Но откуда вообще берётся необходимость рассматривать Лагранжиан как
, а не ограничиться одним только
, ведь
однозначно определяется через
.
На самом деле это хороший вопрос. Ответ на него примерно такой. Первичным понятием является действие, т.е. ФУНКЦИОНАЛ от траектории. Далее рассматривается очень специальный частный случай функционала, когда он может быть представлен в виде интеграла по времени. Но что может быть под таким интегралом? Рассмотрим очень маленькую траекторию, на которой траектория может рассмтриваться как линейная функция. Чем характеризуется такое движение? Двумя параметрами: координатой и скоростью. Прямая полностью определяется двумя параметрами
Вот тогда функционал и будет интегралом от функций этих двух переменных.
Конечно это абсолютно нестогое рассуждение. Хотябы уже потому, что лагранжева функция, в принципе, может зависеть и от высших производных. Но надеюсь это рассуждение натолкнет на интуитивное понимание проблемы. Собственно здесь специальный случай функционала, квазилокальный. Если бы не было зависимости от скорости, то был бы чисто локальный функционал. Зависимость от скорости это простейший учет нелокальности функционала действия. Интуитивно довольно ясно, что чисто локальным функционалом действия невозможно описать динамику, т.е., своего рода влияние соседних моментов времени друг на друга.
В принципе все это, думаю, можно перевести на довольно корректный математический язык. Но увы, мне об этом думать некогда, других проблем хватает.