Не стал создавать новую тему, потому что по сути одно и то же. Нужно доказать, что:
![$$f(x, y) = \begin{cases} \frac{\sin xy}{\sqrt{x^2 + y^2}}, &\sqrt{x^2 + y^2} \neq 0; \\ 0, &\sqrt{x^2 + y^2} = 0; \end{cases}$$ $$f(x, y) = \begin{cases} \frac{\sin xy}{\sqrt{x^2 + y^2}}, &\sqrt{x^2 + y^2} \neq 0; \\ 0, &\sqrt{x^2 + y^2} = 0; \end{cases}$$](https://dxdy-02.korotkov.co.uk/f/9/c/e/9ce124773f5f9cad2cc88cd670641f0982.png)
непрерывна в начале координат.
Фактически нужно доказать, что предел в (0, 0) равен 0. Вот с пределами ФМП у меня есть некоторое непонимание. Когда мы стремимся к предельной точке по какому-нибудь множеству - это ещё не значит, что предел существует. Мало того, даже когда таких множеств несчётное количество, это все равно ни о чём не говорит. Как в таком случае действовать? Это хорошо, что мне дано задание "докажите", то есть заведомо всё известно. А если бы мне сказали просто найти предел в (0, 0). Как тогда быть в таких заданиях. Находил пару примеров в учебнике, но они все сводятся к тому, что
![$\sqrt{x^2 + y^2}$ $\sqrt{x^2 + y^2}$](https://dxdy-02.korotkov.co.uk/f/5/b/0/5b099422ade756ba0c16c301aca3137882.png)
обозначается за
![$\rho$ $\rho$](https://dxdy-03.korotkov.co.uk/f/6/d/e/6dec54c48a0438a5fcde6053bdb9d71282.png)
, затем всё выражется через это
![$\rho$ $\rho$](https://dxdy-03.korotkov.co.uk/f/6/d/e/6dec54c48a0438a5fcde6053bdb9d71282.png)
и считается предел ФОП. Но как быть тут? Разве
![$xy$ $xy$](https://dxdy-03.korotkov.co.uk/f/6/5/f/65f1b48fb5f326a680b0f7393b9d8b6d82.png)
выражается через
![$\rho$ $\rho$](https://dxdy-03.korotkov.co.uk/f/6/d/e/6dec54c48a0438a5fcde6053bdb9d71282.png)
?