Расстояние - непрерывная функция. Компакты изучали?
Мне никак не даёт покоя данная задача. Она в принципе решена, но есть один ньюанс, который меня смущает. Вчера я согласился, что расстояние - это непрерывная функция. Я так понимаю, что Вы подразумевали, вот такое отображение:
. По определению - это отображение непрерывно в
, если
. Не факт, что это так. Расстояние до фиксированной точки - да, непрерывно, а здесь у нас просто расстояние между 2 произвольными точками множеств, не факт, что оно непрерывно, да и к тому же надо сначала ввести какую-то метрику
на
, иначе понятие непрерывности не имеет смысла. И тогда у меня возникает 2 вопрос, зависит ли непрерывность от выбранной метрики или мы можем выбрать любую и доказав, что функция непрерывна для данных метрик мы докажем искомое утверждение. Заранее извиняюсь, если вопросы глупые. Просто порою я не вижу границы формализма и мне хочется более строго доказательства и наоборот - могу что-то не принять в расчёт тогда, когда это формально важно. Иногда я понимаю, что лучше не зацикливаться, но когда в голове засядет какой-то вопрос, решать что-то другое невозможно.