Про соты, разумеется, так. Про ромбододекаэдры - на совести топикстартера; я как раз и пытаюсь у него выяснить, при каких условиях это будут именно они.
Процитирую, что я писал в своей работе по этому поводу:
"Мы знаем, что в таких условиях сферические тела, не обладающие трением, достигают
устойчивого взаимного расположения только в состоянии плотной упаковки. Но, как
известно, плотных упаковок, в которых слои смещены по-разному – множество.
Почему же мы утверждаем, что капли системы будут укладываться именно в плотную
кубическую упаковку, единственную из всех возможных? Сделать такой вывод нам
позволяет общий принцип симметрии, который сформулировал П. Кюри , и который
применим ко всем физическим явлениям: «Если определенные причины вызывают
соответствующие следствия, то элементы симметрии причин должны проявляться в
вызванных ими следствиях. Если в каких-либо явлениях обнаруживается определенная
дисимметрия (т. е. нарушение, расстройство симметрии), то эта же дисимметрия
должна проявляться в причинах, их породивших».
Применяя этот принцип к нашему случаю, можно утверждать, что сферически-симметричное
сжатие системы приведет к плотной упаковке шаров, обладающей наивысшей симметрией
пространственной структуры, которой и является плотная кубическая упаковка."