А во второй, если честно, до сих пор не понимаю, что такое вещественное скалярное поле. С одной стороны, это должно означать, что наблюдаемое значение поля - действительно, с другой - что вещественен каждый элемент оператора.
Стоп-стоп-стоп. Никакого оператора. Речь идёт о классическом поле.
Что такое вещественное скалярное поле? Ну, это такая игрушечная модель, toy theory. На самом деле, в природе есть поля, которые нам известны, их можно пересчитать, загибая пальцы: фермионов, электромагнитное, сильное, слабое, гравитационное. Хиггса вот недавно открыли. Но все эти поля обвешаны всякими рюшечками и дополнительными сложностями. Чтобы к ним приступать, хорошо бы разобраться на более простеньком случае. Опять же, чтобы сразу схватиться с электромагнитным полем, надо описать сразу всё, глаза разбегаются. А в более простом случае, можно последовательно сначала рассмотреть одну деталь, потом добавить к ней другую, потом третью, и так далее, - и постепенно дойти до реальной ситуации.
Какие у нас есть реально классические поля? Электромагнитное, гравитационное. Также можно как классические поля рассматривать волновые функции разных частиц, начиная с электрона. Тут мы замечаем, что все эти поля имеют разные тензорные ранги. У электромагнитного поля ранг 1 (векторное), у гравитационного ранг 2 (тензорное), частицы - спиноры разных спинов, 1/2 у электрона, но бывают частицы и спина 1, и спина 0, и других (например, ядра, или короткоживущие адроны). Для этих случаев у нас есть уравнения поля - уравнения Максвелла, уравнение Эйнштейна, уравнение Шрёдингера (Паули со спином). Все они устроены сходным образом, и мы видим, что чем меньше тензорный ранг (или спин), тем уравнения проще.
Вот и вводится вымышленное классическое поле тензорного ранга 0 - скалярное. Его уравнение поля - уравнение Клейна-Гордона, это аналог волнового уравнения для электромагнитного поля, и релятивистский аналог уравнения Шрёдингера для частицы спина 0. Если мы рассмотрим подробно это игрушечное поле, то потом сможем аналогично рассуждать уже для других, реальных полей.
Уравнения Максвелла и волновое уравнение для электромагнитного поля (

- 4-градиент):

Уравнение Эйнштейна в линеаризованном случае (и при некоторой фиксированной калибровке, здесь

- метрический тензор Минковского):

Уравнение Шрёдингера для спина 0, и его операторная структура:

Заменяя это на релятивистское соотношение между энергией и импульсом, получаем уравнение Клейна-Гордона (

):

Видно, что все эти уравнения имеют сходную структуру:
![$$\Bigl((\text{оператор Д'Аламбера})+\quad[\text{масса}]^2\Bigr)\quad(\text{функция})=\quad[\text{источники}],$$ $$\Bigl((\text{оператор Д'Аламбера})+\quad[\text{масса}]^2\Bigr)\quad(\text{функция})=\quad[\text{источники}],$$](https://dxdy-01.korotkov.co.uk/f/4/2/d/42d432fdc626772215c21b4ac781b52682.png)
где члены
![$[\ldots]$ $[\ldots]$](https://dxdy-02.korotkov.co.uk/f/d/8/5/d858e96f8a6407b34d6dfbee3ac7cf2f82.png)
могут отсутствовать, а оператор Д'Аламбера может быть заменён каким-то другим, более сложным дифоператором второго порядка - в случае ОТО даже нелинейным. Вот это я и называл всякими рюшечками и усложнениями. А для модельного случая можно рассмотреть самую центральную суть:

Итак, в книжках по теории поля, особенно по квантовой теории поля, рассматриваются такие модельные случаи:
1. Вещественное скалярное поле, обычно обозначается

Безмассовое и массивное.
(Оффтоп)

испольуется в традиционных отечественных учебниках,

- в англоязычных, по разным типографским традициям. Но в последние годы (где-то с 90-х) написание

постепенно проникло сначала в переводные учебники, а потом и в практику отечественных физиков. Сложилось разделение, что

применяется во всякой "обычной" физике, а

- в КТП и современных продвинутых разделах на её основе. Впрочем, это дело вкуса.
2. Посложней: комплексное скалярное поле, по сути двухкомпонентное вещественное скалярное поле, что видно, если расписать по действительной и мнимой части всякие произведения

которые встречаются в лагранжиане и в других местах.
3. Можно рассмотреть систему полей, но обычно это уже неинтересно.
4. Вещественное скалярное поле с самодействием - то есть, в лагранжиане добавляются члены, неквадратичные по полю. Наиболее популярный пример - поле с самодействием

Здесь уже можно рассмотреть вопросы взаимодействующих полей КТП, и возмущений с перенормировками.
5. Другой вариант - это "упрощённая электродинамика": два поля с взаимодействием типа "ток на потенциал".
После 1-2 модельных случаев уже идут более реалистичные (или сразу), например:
6. Спинорное поле спина 1/2 - поле Дирака, описывающее, например, релятивистские электроны. Обозначается по традиции

7. Векторное поле - либо абстрактное векторное, либо электромагнитное (калибровочное), либо бозонное массивное (добавляется массовый член). Обозначается

иногда иначе.
8. Полноценная электродинамика: фермионное поле, плюс фотонное, плюс связь "ток на потенциал".
9. Системы полей с разными взаимодействиями.
Для более сложных случаев опять идут некоторые модельные подготовительные примеры:
10. Частным случаем системы полей со специальным взаимодействием является многокомпонентное поле со внутренними степенями свободы и внутренней симметрией. Здесь рассматриваются

-модели, разноцветные кварки.
11. С добавлением векторного калибровочного поля получается модель Янга-Миллса. Глюоны и КХД. Как модельный, рассматривается случай с числом ароматов, стремящимся к бесконечности.
12. Симметрии в случаях 10 и 11 по-разному нарушаются. Здесь возникают электрослабая модель, модели Великого Объединения в разных вариантах.
13. Суперсимметрия сначала тоже рассматривается в простейших модельных случаях, а потом уже - строятся реалистичные модели.
И всё это - ещё до квантования, на уровне классических полей. Квантование таких моделей делают следующим шагом, основательно исследовав поведение модели на классическом уровне. Квантование может быть довольно сложным, и добавить много новых свойств.
Когда изображают такую игрушечную модель, то обычно не ставят вопроса, как именно наблюдаются, и являются ли вообще физически наблюдаемыми, значения этого поля. Считают, что в конечном счёте, это поле войдёт в систему взаимодействующих полей, и там его можно будет наблюдать через взаимодействие с какими-то пробными частицами, подвластными экспериментатору. Или иногда решают по аналогии с электродинамикой: сами потенциалы ненаблюдаемы, а их калибровочно-независимые производные - напряжённости - наблюдаемы. Или по аналогии с квантовой механикой: функции наблюдаемы, но с точностью до произвольной фазы.
Вещественность на этом уровне понимается не как "прибор, измеряющий напряжённость поля, должен вдруг показать комплексное число", а проще: математически поле описывается вещественным или комплексным числом. Если говорят, что поле комплексное, то это просто означает, что оно эквивалентно двум действительным полям

и

а комплексное сопряжение

действует в чём-то аналогично эрмитову или дираковскому сопряжению

То есть, везде, где нужен вещественный скаляр, берётся произведение

В частности, все вероятности таким образом получаются вещественными (как и в квантовой механике для комплексной

), и лагранжиан с гамильтонианом тоже.
И, самое главное, гамильтониан в таком виде перемешивает волны вправо и влево, а было бы замечательно если бы оператор по крайней мере в пространственном смысле диагонализовался.
А, это совсем просто делается. Берёте две линейные комбинации волн вправо и влево, это будут стоячие волны, отличающиеся друг от друга сдвигом на четверть волны (одна синусная, другая косинусная), и гамильтониан в терминах этих линейных комбинаций расцепится:




где

принимает значения всегда в одном полупространстве, и в итоге

чего вам и хотелось. (Здесь мнимая единица помогает положительности энергии, как вы видите.)
Дело в том, что именно эти две альтернативы сейчас меня занимают, а в книжке нет даже минимального указания на то, которая из них соответствует вещественному полю.
Рекомендую поглядеть для сравнения в начало книжки Рубакова "Классические калибровочные поля", главы 1, 2. Впрочем, там нет взаимодействия типа
