2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 О решении проблемы Гауссовых сумм кубического характера.
Сообщение12.06.2014, 18:13 
Заслуженный участник
Аватара пользователя


18/12/07
762
Приводимые ниже данные из книг "К.Айерлэнд, М.Роузен. Классическое введение в современную теорию чисел.1982г." и "Г.Хассе.Лекции по теории чисел. 1953г."
Более менее новых данных по этой проблеме я не нашёл. :oops:

1.
Гауссова сумма кубического характера тесно связана с кубическим вычетом (характером). Она определяется равенством
$$
G\left( {\chi _{\left( \alpha  \right)} } \right) = \sum\limits_{k = 0}^{P - 1} {\chi \left( k \right)} \omega ^k 
$
где
$$
P = \alpha \bar \alpha  = \left( {a + b\varepsilon } \right)\left( {a + b\varepsilon ^2 } \right) \equiv 1\left( {\bmod 3} \right),\varepsilon  = e^{\frac{{2\pi i}}{3}} ,\omega  = e^{\frac{{2\pi i}}{P}} 
 $
$ \alpha $ - примарное.
$$
\chi _{\left( \alpha  \right)} \left( k \right) = 1,\varepsilon ,\varepsilon ^2 
$ - кубический характер
Известно, что
$$  
G^3 \left( {\chi _{\left( \alpha  \right)} } \right) = P\alpha 
$
то есть
$$
G\left( {\chi _{\left( \alpha  \right)} } \right) = \varepsilon ^k \sqrt[3]{{P\alpha }}
$
Точное значение $ k $ оказалось проблемой, так как формула для этих сумм ( в отличии от квадратичных сумм Гаусса) не была найдена.
Хассе посетовал, что лучше бы огромная масса ферматистов ("профессионалов и дилетантов") занялись этой проблемой, так важной для теории чисел, чем... :evil:
Касселс высказал гипотезу по поводу точного выражения для этой суммы через эллиптические функции, которую в 1979г. доказал Мэттьюз, но она, по видимому, не помогла найти точное выражение для $ k $.


2.
В теме
Представление простого P=3n+1 формой P=A^2-AB+B^2 было получено соотношение
$$\[
\eta _P ^3  = P\left( {a + b\varepsilon } \right) \to P = \left( {a + b\varepsilon } \right)\left( {a + b\varepsilon ^2 } \right)
\]$
$$
\eta _P  = \varsigma _{\left( 0 \right)}  + \varsigma _{\left( 1 \right)} \varepsilon  + \varsigma _{\left( 2 \right)} \varepsilon ^2 
$
$$
\varsigma _{\left( m \right)}  = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3k + m} } } 
$
Простое $$P \equiv 1\left( {\bmod 3} \right), g $ - его первообразный корень
Как видим, оно полностью совпадает с выражением для Гауссовой суммы кубического характера
$$  
G^3 \left( {\chi _{\left( \alpha  \right)} } \right) = P\alpha 
$

Отсюда
$$  
G\left( {\chi _{\left( \alpha  \right)} } \right) = \varepsilon ^k \eta _P 
$

Куммер показал
$$   
G\left( {\chi _{\left( 3 \right)} } \right) + \bar G\left( {\chi _{\left( 3 \right)} } \right) = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}} 
$
Следовательно
$$  
\varepsilon ^k \eta _P  + \varepsilon ^{2k} \bar \eta _P  = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}} 
$
a)При $ k=0 $ получим
$$ \[
\eta _P  + \bar \eta _P  = \left( {\varsigma _{\left( 0 \right)}  + \varsigma _{\left( 1 \right)} \varepsilon  + \varsigma _{\left( 2 \right)} \varepsilon ^2 } \right) + \left( {\bar \varsigma _{\left( 0 \right)}  + \bar \varsigma _{\left( 1 \right)} \varepsilon ^2  + \bar \varsigma _{\left( 2 \right)} \varepsilon } \right)
\]$
$$ \[
\bar \varsigma _{\left( m \right)}  = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{ - \frac{{2\pi i}}{P}g^{3k + m} } }  = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\left( {g^{\frac{{P - 1}}{6}} } \right)^3 \frac{{2\pi i}}{P}g^{3k + m} } }  = \sum\limits_{k = 1}^{\frac{{P - 1}}{3}} {e^{\frac{{2\pi i}}{P}g^{3\left( {k + \frac{{P - 1}}{6}} \right) + m} } }  = \varsigma _{\left( m \right)} 
\]$
Следовательно
$$ \[
\varsigma _{\left( m \right)}  = \bar \varsigma _{\left( m \right)}  \to {\mathop{\rm Im}\nolimits} \left( {\varsigma _{\left( m \right)} } \right) = 0
\]$
Тогда получим
$$ \[
\eta _P  + \bar \eta _P  = \left( {3\varsigma _{\left( 0 \right)}  + 1} \right) - \left( {\varsigma _{\left( 0 \right)}  + \varsigma _{\left( 1 \right)}  + \varsigma _{\left( 2 \right)}  + 1} \right) = 3\varsigma _{\left( 0 \right)}  + 1
\]$
$$ \[
3\varsigma _{\left( 0 \right)}  + 1 = 1 + \sum\limits_{k = 1}^{P - 1} {e^{\frac{{2\pi i}}{P}g^{3k} } }  = \sum\limits_{k = 0}^{P - 1} {e^{\frac{{2\pi i}}{P}k^3 } }  = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}}  + i\sum\limits_{k = 0}^{P - 1} {\sin \frac{{2\pi k^3 }}{P}}  = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}} 
\]$
$$ \[
G\left( {\chi _{\left( \alpha  \right)} } \right) = \eta _P 
\]$
d)При $ k=1 $ получим
$$ \[
\varepsilon \eta _P  + \varepsilon ^2 \bar \eta _P  = \left( {\varsigma _{\left( 0 \right)} \varepsilon  + \varsigma _{\left( 1 \right)} \varepsilon ^2  + \varsigma _{\left( 2 \right)} } \right) + \left( {\varsigma _{\left( 0 \right)} \varepsilon ^2  + \varsigma _{\left( 1 \right)} \varepsilon ^2  + \varsigma _{\left( 2 \right)} } \right) = 3\varsigma _{\left( 2 \right)}  + 1
\]$
$$ \[
3\varsigma _{\left( 2 \right)}  + 1 = 1 + \sum\limits_{k = 1}^{P - 1} {e^{\frac{{2\pi i}}{P}g^{3k + 1} } }  = 1 + \sum\limits_{k = 1}^{P - 1} {e^{\frac{{2\pi i}}{P}g^{3k} g} }  = \sum\limits_{k = 0}^{P - 1} {e^{\frac{{2\pi gi}}{P}k^3 } }  = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi gk^3 }}{P}}  \ne \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}} 
\]$
Аналогично и для $ k=2 $


Таким образом, если где-нибудь не порылась собака, элементарно показано, что в Гауссовой сумме кубического характера $ k=0 $
$$ \[
G\left( {\chi _{\left( \alpha  \right)} } \right) = \sqrt[3]{{P\alpha }}
\]$
Точная формула Гауссовой суммы
$$ \[
G\left( {\chi _{\left( \alpha  \right)} } \right) = \eta _P 
\]$

 Профиль  
                  
 
 Re: О решении проблемы Гауссовых сумм кубического характера.
Сообщение12.06.2014, 18:45 
Заслуженный участник


20/12/10
9110
Коровьев в сообщении #874673 писал(а):
$\chi _{\left( \alpha  \right)} \left( k \right) = 1,\varepsilon ,\varepsilon ^2$ - кубический характер
Напомните определение кубического характера.

 Профиль  
                  
 
 Re: О решении проблемы Гауссовых сумм кубического характера.
Сообщение12.06.2014, 21:08 
Заслуженный участник
Аватара пользователя


18/12/07
762
Простое $P = \beta \bar \beta $
Характер кубического вычета (часто просто - кубический характер) определяется из соотношения
$$\alpha ^{\frac{{P - 1}}{3}}  \equiv \chi _{\left( \beta  \right)} \left( \alpha  \right)\left( {\bmod \beta } \right)$

$\chi _{\left( \beta  \right)} \left( \alpha  \right) = \varepsilon ^k ,k = 0,1,2$

 Профиль  
                  
 
 Re: О решении проблемы Гауссовых сумм кубического характера.
Сообщение13.06.2014, 13:20 
Заслуженный участник


20/12/10
9110
Коровьев, проблема в том, что $\eta_P$ зависит от выбора первообразного корня $g$. При этом $\varsigma_{(0)}$ не зависит от $g$, а $\varsigma_{(1)}$ и $\varsigma_{(2)}$ могут поменяться ролями при выборе другого $g$. Поскольку все $\varsigma_{(m)}$ вещественны, это может привести к тому, что $\eta_P$ заменится на сопряжённое число. Рассмотрите пример $P=7$ и $g=3$ или $g=5$.
Коровьев в сообщении #874673 писал(а):
Точная формула Гауссовой суммы
$$
G\left( {\chi _{\left( \alpha  \right)} } \right) = \eta _P$$
По-моему, это равенство тривиально: правая часть --- это просто сгруппированная левая часть. Группировка слагаемых соответствует разбиению группы $\mathbb{Z}_P^*$ на смежные классы по подгруппе точных кубов (кубических вычетов по модулю $P$).

 Профиль  
                  
 
 Re: О решении проблемы Гауссовых сумм кубического характера.
Сообщение13.06.2014, 15:34 
Заслуженный участник
Аватара пользователя


18/12/07
762
nnosipov в сообщении #874898 писал(а):
Коровьев, проблема в том, что $\eta_P$ зависит от выбора первообразного корня $g$. При этом $\varsigma_{(0)}$ не зависит от $g$, а $\varsigma_{(1)}$ и $\varsigma_{(2)}$ могут поменяться ролями при выборе другого $g$. Поскольку все $\varsigma_{(m)}$ вещественны, это может привести к тому, что $\eta_P$ заменится на сопряжённое число.

Всё верно. Но на результат, что $ k=0$ это не влияет. Так как доказывается соотношение:
$$
\eta _P  + \bar \eta _P  = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}} 
$
nnosipov в сообщении #874898 писал(а):
По-моему, это равенство тривиально: правая часть --- это просто сгруппированная левая часть. Группировка слагаемых соответствует разбиению группы $\mathbb{Z}_P^*$ на смежные классы по подгруппе точных кубов (кубических вычетов по модулю $P$).

Не думаю, что тривиально. Иначе результат давно бы гулял, по поп.литературе.
Но здесь уже на результат
$$ \[
G\left( {\chi _{\left( \alpha  \right)} } \right) = \eta _P 
\]$
влияет выбор первообразного корня. Я об этом не подумал.
Спасибо.

 Профиль  
                  
 
 Re: О решении проблемы Гауссовых сумм кубического характера.
Сообщение13.06.2014, 16:16 
Заслуженный участник


20/12/10
9110
Коровьев в сообщении #874946 писал(а):
Так как доказывается соотношение:
$$
\eta _P  + \bar \eta _P  = \sum\limits_{k = 0}^{P - 1} {\cos \frac{{2\pi k^3 }}{P}} 
$$
А в чём его нетривиальность? Слева сумма, справа сумма, количества слагаемых примерно одинаково. Равенство $\eta _P  + \bar \eta_P=3\varsigma_{(0)}+1$ нетривиально доказывается? У Вас вроде на двух строчках доказательство приведено (или, кроме этих двух строчек, ещё что-то нужно?). То, что сумма с косинусами в 3 раза больше $\varsigma_{(0)}$, по-моему, очевидно.

-- Пт июн 13, 2014 20:55:34 --

Коровьев в сообщении #874946 писал(а):
Не думаю, что тривиально.
Я не хотел, конечно, сказать, что вычисление гауссовой суммы кубического характера является тривиальным делом. Имелось в виду более-менее очевидность того, что гауссову сумму можно представить как сумму $\eta_P$ с некоторым $g$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group