Если на сфере построить четырёхугольник так, что две противоположные стороны лежат на окружностях, образованных пересечением двух параллельных плоскостей, то можно этот четырёхугольник на сфере уподобить трапеции на плоскости?
Это не будет четырехугольником. Геодезическими на сфере являются только окружности, возникающие при сечении сферы плоскостями, проходящими через ее центр. Соответственно, для Ваших двух окружностей как минимум одна геодезической не будет, т.е. у "четырехугольника" хотя бы одна сторона - кривая.
Исходная задача решается попросту разбиением фигуры на два треугольника, для каждого из которых площадь равна сумме углов треугольника минус
. Но это при условии, что все стороны фигуры - отрезки геодезических (дуги больших кругов), иначе таки надо сначала понять, что ТС называет "трапецией".