2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.
 
 Re: Скорость и инерция.
Сообщение13.05.2014, 00:49 
Заслуженный участник


29/11/11
4390
С.Мальцев в сообщении #862471 писал(а):
Поясните, пожалуйста. Если речь идет о наблюдении различных часов одним наблюдателем и о наблюдении одних часов различными наблюдателями, то да, в одном случае ход часов будет выглядеть в $\gamma$ раз ускоренным, в другом случае – в $\gamma$ раз замедленным. Тогда что Вы подразумеваете под этим – “третий (экземпляр часов) не изменяет хода”.


имеем трое часов, двигающихся со скоростями 0, 50 с копейками и 100, три процесса в разном темпе. при переходе в исо двигающуюся со скоростью 100 от предыдущей первый процесс замедляется, второй не меняет темпа, третий ускоряется

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение14.05.2014, 21:47 


19/05/08

583
Riga
rustot в сообщении #862477 писал(а):
имеем трое часов, двигающихся со скоростями 0, 50 с копейками и 100, три процесса в разном темпе. при переходе в исо двигающуюся со скоростью 100 от предыдущей первый процесс замедляется, второй не меняет темпа, третий ускоряется
А, вон Вы о чем, понятно. Да, именно так, и тем не менее...

rustot в сообщении #862051 писал(а):
С.Мальцев в сообщении #862006 писал(а):
Если рассматривать ситуацию с позиции Лоренца-Пуанкаре
с чьей позиции ни рассматривай
В том-то и дело, что существуют принципиальные различия в позициях Эйнштейна-Минковского и Лоренца-Пуанкаре.
Если с позиций Э-М все эти наблюдаемые изменения при переходах из одной ИСО в другую обусловлены только геометрическими свойствами пространства-времени (что-то вроде оптических иллюзий и обмана зрения), то с позиций Л-П изменения реальны и физичны. Время в движущейся ИСО действительно замедляется, атомы (а, соответственно, и линейки) действительно сокращаются, часы идут асинхронно, и именно эти явления как раз и обеспечивают с одной стороны неизменность наблюдаемой скорости света, с другой стороны, благодаря этим явлениям и обеспечивается сохранение принципа относительности.
Однако для сохранение принципа относительности явно недостаточно только замедления времени, сокращения атомов и рассинхронизации часов. Должны еще и действительно изменяться не только такие физические свойства веществ, как, скажем, плотность и твердость, вязкость и эластичность, текучесть и теплопроводность, но и изменяться законы классической физики, например, в оптике – угол падения в общем случае не равен углу отражения, и т.д.

Как видим, позиции Эйнштейна-Минковского и Лоренца-Пуанкаре различаются кардинально.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение15.05.2014, 08:47 
Заслуженный участник


29/11/11
4390
С.Мальцев в сообщении #863351 писал(а):
Время в движущейся ИСО действительно замедляется, атомы (а, соответственно, и линейки) действительно сокращаются, часы идут асинхронно, и именно эти явления как раз и обеспечивают с одной стороны неизменность наблюдаемой скорости света, с другой стороны, благодаря этим явлениям и обеспечивается сохранение принципа относительности.
Однако для сохранение принципа относительности явно недостаточно только замедления времени, сокращения атомов и рассинхронизации часов. Должны еще и действительно изменяться не только такие физические свойства веществ, как, скажем, плотность и твердость, вязкость и эластичность, текучесть и теплопроводность, но и изменяться законы классической физики, например, в оптике – угол падения в общем случае не равен углу отражения, и т.д.


такая система сооружается без проблем. просто берется произвольная исо и ее инструменты назначаются единственно правильными, "настоящими". а показания любых других инструментов - неверными в силу физических изменений, происходящих с ними при движении относительно этого абсолюта. но такая система будет выглядеть явно притянутой за уши, искуственно усложненной, а выбор абсолюта ничем не обоснованным и недоказуемым.

можно ведь переписать законы движения небесных тел как функцию их местоположения относительно звезды московского кремля и доказать что она неверна будет невозможно, потому-что она будет верна. но явно искуственно усложнена и притянута за уши.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение15.05.2014, 11:05 
Заслуженный участник
Аватара пользователя


28/09/06
10851
С.Мальцев в сообщении #863351 писал(а):
Если с позиций Э-М все эти наблюдаемые изменения при переходах из одной ИСО в другую обусловлены только геометрическими свойствами пространства-времени (что-то вроде оптических иллюзий и обмана зрения), то с позиций Л-П изменения реальны и физичны.

Все эти слова про «реальность» или «иллюзорность» наблюдаемых изменений не несут никакого смысла. Лоренц верил в существование выделенной СО, однако в итоге так и не смог предложить способа её обнаружить. Так что науке с помощью Эйнштейна пришлось научиться обходиться без выделенной СО.

С.Мальцев в сообщении #863351 писал(а):
именно эти явления как раз и обеспечивают с одной стороны неизменность наблюдаемой скорости света, с другой стороны, благодаря этим явлениям и обеспечивается сохранение принципа относительности.

Вы можете верить к какие угодно «корневые причины» неизменности скорости света, ибо это непроверяемо. Но факт заключается в том, что только постулат о неизменности скорости света позволяет нам на практике синхронизировать удалённые часы, т.е. ввести то понятие одновременности, с которым работает теория относительности.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение15.05.2014, 12:33 
Аватара пользователя


18/06/13

505
Подмосковье
С.Мальцев в сообщении #863351 писал(а):
с позиций Л-П изменения реальны и физичны.

Не наговаривайте на Лоренца и Пуанкаре напраслину. Если Лоренц, действительно, какое-то время безуспешно разрабатывал гипотезу сокращения межатомных расстояний у движущегося тела, то Пуанкаре никогда подобными вещами не занимался. Он ещё до разработки теории относительности чётко формулировал: не природа даёт нам пространство и время, а мы даём их природе, потому что находим это удобным.
Первооткрыватели были вправе предполагат и ошибаться. Сейчас СТО законченная и исчерпывающе провернная на практике теория. На беспокоящие Вас вопросы в Физической энциклопедии, т. 2, С. 608 дан окончательный ответ:
Цитата:
Они (промежутки времени и отрезки длины) относительны примерно в том же смысле, каком относительными являются суждения наблюдателей об угл. расстоянии, под к-рыми они видят одну и ту же пару предметов.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение25.05.2014, 21:50 


19/05/08

583
Riga
rustot в сообщении #863426 писал(а):
такая система сооружается без проблем. просто берется произвольная исо и ее инструменты назначаются единственно правильными, "настоящими". а показания любых других инструментов - неверными в силу физических изменений, происходящих с ними при движении относительно этого абсолюта. но такая система будет выглядеть явно притянутой за уши, искуственно усложненной, а выбор абсолюта ничем не обоснованным и недоказуемым.
Так-то оно так, вроде бы...
Тем не менее, попробуем рассмотреть эксперимент с ускорениями. Представим себе что-то вроде эйнштейнова лифта, только для наглядности (поскольку направление скорости и ускорения не совпадают) будем не тянуть его за трос с ускорением, а толкать. Например, ставим его на рельсы (превратив лифт в вагон), а самим рельсам с помощью, скажем, домкратов, придаем небольшое постоянное ускорение. Рельсы располагаем по оси $y$, а ускорение $a$ неподвижному относительно рельс вагону обеспечиваем в направлении положительных значений оси $x$.

Теперь придадим вагону скорость по оси $y$. В таком случае, для того чтобы приборы в вагоне зафиксировали такое же ускорение $a$, как и в неподвижном относительно рельс вагоне, ускорение рельс по оси $x$ необходимо уменьшить с коэффициентом $k^2$.

Далее вся система (домкраты, рельсы и вагон) движется по оси $x$ со скоростью $v$ (оси $x$ и $x'$ совпадают). Теперь придаем рельсам с неподвижным относительно рельс вагоном такое же ускорение $a$ с точки зрения сопутствующих наблюдателей ИСО', но уменьшеным с коэффициентом $k_v^3$ с точки зрения наблюдателей покоящейся ИСО, т.к. теперь скорость и ускорение сонаправлены. Приборы в вагоне должны зафиксировать первоначальное ускорение $a$.

И снова повторяем эксперимент с движением вагона по оси $y'$ с той же скоростью $w$, как и в первом случае. Следуя принципу относительности, надо полагать, что и в данном случае ускорение рельс по оси $x'$ необходимо уменьшить с коэффициентом $k_w^2$. Т.е. с точки зрения наблюдателей покоящейся ИСО, ускорение вагона должно уменьшиться с коэффициентом $k_v^3 k_w^2$.

Будут ли в таком случае показания приборов в вагоне соответствовать первоначальным их показаниям в покоящейся ИСО?

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение26.05.2014, 00:33 


19/05/08

583
Riga
С.Мальцев в сообщении #867766 писал(а):
Будут ли в таком случае показания приборов в вагоне соответствовать первоначальным их показаниям в покоящейся ИСО?
Казалось бы, странный вопрос.
Но, промоделировав такой эксперимент графически, уже получаем информацию к размышлению. Для упрощения возьмем заданные скорости равными, скажем, $v=w=0{,}8$ ($c=1$) и получаем два рисунка – слева для покоящейся ИСО, справа для движущейся со скоростью $v$ ИСО'. На правом рисунке отображено движение вагона в ИСО' с точки зрения наблюдателей покоящейся ИСО со скоростью $u=0,9330$ и под углом $\gamma$ к оси $x$ со значениями $\sin\gamma=0{,}5145, \cos\gamma=0{,}8575$:

Изображение


Сразу же обнаруживаются различия в направлении ускорения относительно «вертикали» вагона. Если в первом случае такое ускорение соответствует «вертикали» вагона, то во втором случае направление ускорения заметно отклонено. Расчеты предоставлю чуть позднее.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение26.05.2014, 17:58 


19/05/08

583
Riga
Обратим внимание также на сокращение линеек в первом и во втором случае в движущемся вагоне (в направлении ускорения). Если, как видно из левого рисунка, в первом случае линейки в направлении ускорения не сокращаются, то во втором случае линейка в вагоне в направлении ускорения сокращена несколько больше, чем такая же линейка, покоящаяся относительно ИСО'. Поскольку ускорение можно вычислить с помощью линеек и часов, то при сокращенных линейках и прочих равных условиях, ускорение должно быть зафиксировано несколько большим.

Попробуем рассчитать, какое ускорение зафиксируют приборы, если действовать в соответствии с принципом относительности. Пусть в первом случае (в покоящейся ИСО) приборы в вагоне фиксировали ускорение, скажем, 10 м/сек². Тогда, в соответствии с принципом относительности, ускорение в движущейся ИСО' с точки зрения наблюдателей покоящейся ИСО, при $v=w=0{,}8$ и $k_v=k_w^2= 0{,}6$ должно составить, $a=a'k_v^3 k_w^2= 0{,}78$ м/сек².

Если же произвести расчет сгласно приведенной в стартовом посте формуле:
$$
a=a'\sqrt{ \frac{\left(1-\frac{u^2}{c^2}\right)^3}{1-\frac{(u\sin\gamma)^2}{c^2}}} 
$$
(при $u=0,9330,\sin\gamma=0{,}5145$)

то для того, чтобы приборы в вагоне зафиксировали первоначальное ускорение 10 м/сек², в этом направлении необходимо придать ускорение $a=0{,}53$ м/сек² с точки зрения наблюдателей покоящейся ИСО.

Теперь, найдя соотношение необходимого и расчетного ускорения (0,68), получаем значение ускорения, которое должны зафиксировать приборы движущегося вагона в ИСО' $ a'= 14{,}62$ м/сек² при $a=0{,}78$ м/сек² с точки зрения наблюдателей покоящейся ИСО.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение27.05.2014, 07:43 


19/05/08

583
Riga

(Оффтоп)

Странное ощущение – третий день как будто сам с собой общаюсь. Ни ответа, ни привета...
Может быть предложенная задача несколько сложновата для восприятия?


Упростим задачу. Берем длинную ракету, с помощью маршевого двигателя ускоряем ее по оси $x$ до некоторой скорости $v$ и отключаем двигатель. Теперь с помощью вспомогательных двигателей одновременно (с точки зрения сопутствующих наблюдателей) начинаем ускорять ракету по оси $y'$. С точки зрения наблюдателей покоящейся ИСО (в силу рассинхронизации часов в ИСО' по оси $x'$) сначала двинется корма, затем нос ракеты. По мере увеличения скорости $w$ по оси $y'$, угол отклонения ракеты относительно оси $x$ должен увеличиваться всё больше и больше с точки зрения наблюдателей покоящейся ИСО, иначе с точки зрения наблюдателей ИСО' расположение ракеты (опять же – в силу рассинхронизации часов в ИСО') перестанет быть строго параллельным оси $x'$. Затем отключаем вспомогательные двигатели и ракета в таком «наклонном» положении продолжает движение по оси $y'$.

Если теперь повторно включить маршевый двигатель, то в каком направлении должна начать ускоряться ракета?

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение27.05.2014, 12:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

С.Мальцев в сообщении #868287 писал(а):
Странное ощущение – третий день как будто сам с собой общаюсь. Ни ответа, ни привета...

На вас все махнули рукой.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение27.05.2014, 20:40 


19/05/08

583
Riga
Munin в сообщении #868328 писал(а):
На вас все махнули рукой.
Возможно, возможно...

Хотя, у меня бы, пожалуй, всё же возникли бы некоторые вопросы. Скажем, если у ракеты сначала двинется корма, а затем всё остальное, то сможет ли такая ракета ускоряться строго по оси $y'$ в ИСО' или принцип относительности нарушится сразу же из-за изменения направления вектора тяги, как только мы попытаемся таким образом ускорять ракету перпендикулярно направлению движения ИСО'?

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение28.05.2014, 20:37 


19/05/08

583
Riga
Пардон, приведенная несколькими постами выше формула, конечно же, при $c=1$ должна выглядеть несколько иначе:
$$
a=a'\sqrt{ \frac{(1-u^2)^3}{1-(u\sin\gamma)^2}} 
$$
epros в сообщении #863452 писал(а):
Все эти слова про «реальность» или «иллюзорность» наблюдаемых изменений не несут никакого смысла. Лоренц верил в существование выделенной СО, однако в итоге так и не смог предложить способа её обнаружить.
Может быть, у Лоренца тогда всего лишь не было компьютера?

epros в сообщении #863452 писал(а):
Так что науке с помощью Эйнштейна пришлось научиться обходиться без выделенной СО.
А как Вам такой вариант – наука, возможно, больше потеряла чем приобрела, научившись обходиться без идей Лоренца и Пуанкаре? Разумеется, идей о сути релятивистской физики.

npduel в сообщении #863470 писал(а):
Сейчас СТО законченная и исчерпывающе провернная на практике теория. На беспокоящие Вас вопросы в Физической энциклопедии, т. 2, С. 608 дан окончательный ответ
Окончательный ответ был дан задолго до Физической энциклопедии:
Цитата:
Все, что могло быть изобретено, уже изобрели.
(Charles Н. Duell - специальный уполномоченный американского Бюро Патентов, 1899 г.)

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение02.06.2014, 12:49 


19/05/08

583
Riga
Рассмотрим подробнее частный случай движения единичного отрезка A''B'' ИСО'' со скоростью $w$ относительно ИСО' по оси $y'$ (оси $y'$ и $y''$ совпадают) при движении единичного отрезка A'B' (ИСО') со скоростью $v$ по оси $x$ (оси $x$ и $x'$ совпадают) относительно покоящейся ИСО. Отрезки A'B' и A''B'' расположены на осях $x'$ и $x''$ соответственно. Оси $x'$ и $x''$ с точки зрения наблюдателей ИСО расположены относительно друг друга под углом $\varphi$ (см. ниже правый рисунок), хотя, с точки зрения наблюдателей ИСО' и ИСО'' оси $x'$ и $x''$ в нулевой «момент» времени совпадают. Расчеты показывают, что ИСО' и ИСО'' при таком движении остаются связанными преобразованиями Лоренца. Так что, при инерционном движении принцип относительности, несомненно, сохраняется.

На левом рисунке отображено положение единичных отрезков в нулевой момент времени ИСО и в точках B' и B'' при их совпадении. На правом рисунке отображено положение тех же отрезков нулевой момент в точках A' и A'' при их совпадении:

Изображение


Рассинхронизация часов между точками A' и B' (при $c=1$) составляет $\Delta t'=-x'v$, но поскольку в данном случае $x'=1$ часы в точке A' опережают часы в точке B' на величину $\Delta t'=v$. Поскольку часы в ИСО' с точки зрения наблюдателей ИСО идут замедлено с коэффициентом $k=\sqrt{1-v^2}$, между совпадениями концов отрезков в ИСО должно пройти:
$$t=\frac v{\sqrt{1-v^2}}$$
Поскольку линейки по оси $y'$ в ИСО' с точки зрения наблюдателей ИСО не сокращены, а часы в ИСО' идут замедлено с коэффициентом $k$, скорость $w$ в ИСО' должна тоже упасть с коэффициентом $k$, т.е. $w_0= w\sqrt{1-v^2}$. Таким образом, за время $t$, точка A'' пройдет (с точки зрения наблюдателей ИСО) по оси $y'$ расстояние:
$$y=w_0t=\frac{vw\sqrt{1-v^2}}{\sqrt{1-v^2}}=vw$$
Учитывая, что единичный отрезок A'B' сокращен с коэффициентом $k$, получаем формулу длины отрезка A''B'' с точки зрения наблюдателей ИСО:
$$l_0'' =\sqrt{1-v^2+(vw)^2}=\sqrt{1-v^2(1-w^2)}$$
Откуда далее находим значение угла $\varphi$, т.е. угла отклонения оси $x''$ относительно осей $x$ и $x'$ с точки зрения наблюдателей ИСО:
$$\sin\varphi =\sqrt{\frac{(vw)^2}{1-v^2(1-w^2)}}$$
$$\cos\varphi =\sqrt{\frac{1-v^2}{1-v^2(1-w^2)}}$$
Теперь, с помощью одной из формул ПЛ (слегка подредактированной под данную задачу) находим точку A' ($y'=0, t'=v$) в ИСО'':
$$
y''=\frac{y'-wt'}{\sqrt{1-w^2}}= \frac{-vw}{\sqrt{1-w^2}}
$$
Поскольку с точки зрения наблюдателей ИСО'' оси $x''$ и $y''$ ортогональны, а длина отрезка A''B'' равна единице, получаем угол $\varphi''$, т.е. угол, под которым отвес отклонится от вертикали в ИСО'' при ускорении в направлении оси $y'$:
$$ \cos\varphi'' =\frac 1{\sqrt{1+\frac{(vw)^2}{1-w^2}}}$$

Эти расчеты вполне можно проверить с помощью формул, выведенных для общего случая движения двух ИСО относительно третьей. Но об этом в следующий раз.

И что занимательно, при ускорении по оси $x'$, отвес (с точки зрения наблюдателей ИСО'') должен отклониться на угол $\varphi''$, а вот если отпустить шарик, то он тоже должен упасть под углом $\varphi''$, но остаться лежать на полу вагона. А если вагон ускорять по оси $x''$, то шарик должен упасть «вертикально» вниз и тут же покатиться по горизонтальному полу в направлении положительных значений оси $y''$.


P.S. На рисунках отображено движение при $v=0{,}8, w=0{,}5$
$t=1{,}(3)$
$ l_0''=0{,}72$
$\varphi=33{,}69^{\circ}$
$\varphi''=24{,}79^{\circ}$

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение02.06.2014, 20:58 


19/05/08

583
Riga
Пожалуй, прежде чем перейти к дальнейшему разбору полетов, стоит вывести общую формулу сокращения отрезков в движущейся со скоростью $v$ ИСО' с точки зрения наблюдателей покоящейся ИСО. С помощью формул $x'=\cos\alpha', y'=\sin\alpha'$ строим единичную окружность в ИСО'. Теперь, перейдя в покоящуюся ИСО, сокращаем отрезки по оси $x$ с коэффициентом $k$ и получаем сжатый эллипс $x=\cos\alpha'\sqrt{1-v^2}, y=\sin\alpha'$, но углы теперь не соответствуют первоначальным. Поэтому берем формулы перерасчета углов из ИСО в ИСО' (1a, 1b) и обратно (2a, 2b):
$$\sin\alpha'= \frac{\sin\alpha\sqrt{1-v^2}}{\sqrt{1-(v\sin\alpha)^2}}\ \eqno (1a)$$
$$\cos\alpha'= \frac{\cos\alpha}{\sqrt{1-(v\sin\alpha)^2}}\ \eqno (1b)$$
$$\sin\alpha= \frac{\sin\alpha'}{\sqrt{1-(v\cos\alpha')^2}} \ \eqno (2a)$$
$$\cos\alpha= \frac{\cos\alpha'\sqrt{1-v^2}}{\sqrt{1-(v\cos\alpha')^2}}\ \eqno (2b)$$
и в формулы $x=\cos\alpha'\sqrt{1-v^2}, y=\sin\alpha'$ подставляем соответствующие выражения из формул (1a, 1b) и получаем $x=\frac{\cos\alpha\sqrt{1-v^2}}{\sqrt{1-(v\sin\alpha)^2}}$, $y=\frac{\sin\alpha\sqrt{1-v^2}}{\sqrt{1-(v\sin\alpha)^2}}$, т.е. такой же эллипс, но уже с правильными углами. Откуда получаем фомулу наблюдаемой длины отрезков ($l_0=\sqrt{x^2+y^2}$), расположенных под различными углами (как длина, так и угол расположения отрезка соответствуют наблюдаемым из покоящейся ИСО):
$$l= l'\sqrt{\frac{1-v^2}{1-(v\sin\alpha)^2}}\ \eqno (3)$$
из которой легко выводится формула для ускорений, представленная в стартовом посте $a=a'\sqrt{\frac{(1-v^2)^3}{1-(v\sin\alpha)^2}}$. Хотя, помнится, тогда выводил ее зачем-то с помощью ПЛ.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение03.06.2014, 20:27 
Заслуженный участник
Аватара пользователя


28/09/06
10851
С.Мальцев в сообщении #868913 писал(а):
epros в сообщении #863452 писал(а):
Лоренц верил в существование выделенной СО, однако в итоге так и не смог предложить способа её обнаружить.
Может быть, у Лоренца тогда всего лишь не было компьютера?
Интересно, каким образом компьютер может помочь обнаружить выделенную СО?

С.Мальцев в сообщении #868913 писал(а):
epros в сообщении #863452 писал(а):
Так что науке с помощью Эйнштейна пришлось научиться обходиться без выделенной СО.
А как Вам такой вариант – наука, возможно, больше потеряла чем приобрела, научившись обходиться без идей Лоренца и Пуанкаре? Разумеется, идей о сути релятивистской физики.
Когда придумаете способ обнаружить трёх китов, на которых стоит Земля, тогда посмотрим, что мы потеряли. А пока что без относительности никак.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 109 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group