2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Введение в теорию алгебраических чисел
Сообщение27.03.2014, 12:16 


31/03/06
1384
В форуме "Великая Теорема Ферма", я опубликовал успешное доказательства ВТФ для $n=3$, используя однозначность разложения на простые множители в поле алгебраических чисел $\mathbb{Q}[\sqrt[3]{2}]$.
Однозначность разложения на простые множители имеет место в поле $\mathbb{Q}[\sqrt[n]{2}]$ и для других значений $n$.
Я проверил это на компьютере для всех простых $n<50$.

Знание теории алгебраических чисел и свойств поля $\mathbb{Q}[\sqrt[n]{2}]$ может быть полезным в поиске доказательства ВТФ для более высоких степеней.
В связи с этим, я создал в упомянутом форуме тему, в которой предпринял попытку написать введение в теорию алгебраических чисел.
Эта тема является второй попыткой написать такое введение с учётом многочисленных исправлений.
Я буду заниматься этим в свободное время, без всяких обязательств по срокам написания.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение27.03.2014, 13:15 
Заблокирован


16/06/09

1547
ничего не получится, но пожелаю успеха!

 Профиль  
                  
 
 Posted automatically
Сообщение27.03.2014, 13:21 
Супермодератор
Аватара пользователя


20/11/12
5728
 i  Тема перемещена из форума «Свободный полёт» в форум «Дискуссионные темы (М)»
Перенёс в соответствующий раздел

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение27.03.2014, 19:50 


31/03/06
1384
temp03 в сообщении #841579 писал(а):
ничего не получится, но пожелаю успеха!


Спасибо!

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение28.03.2014, 10:38 
Заслуженный участник


08/04/08
8562
Феликс Шмидель в сообщении #841558 писал(а):
Однозначность разложения на простые множители имеет место в поле $\mathbb{Q}[\sqrt[n]{2}]$ и для других значений $n$.
Я проверил это на компьютере для всех простых $n<50$.
Вы это именно доказали? У Вас в старой теме есть доказательство? (а то она длинная)

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение28.03.2014, 14:51 


31/03/06
1384
Я не доказывал это, а проверил в программе gp/PARI.
Я писал об этом в теме: "ВТФ для любого простого показателя $n$":

Феликс Шмидель в сообщении #782997 писал(а):
Более того, оказывается для всех простых чисел $n<50$, все идеалы этого кольца являются главными.
Чтобы показать это, поработаем с математической компьютерной программой, которая называется gp/PARI.
Соберём данные о поле $\mathbb{Q}[\sqrt[n]{2}]$ командой:

A=bnfinit(x^n-2);

Теперь найдём число классов идеалов командой:

A.no

Для всех простых $n<50$ я получил ответ: 1!
Возможно, что это верно и для простых $n>50$, но я решил на этом остановиться, потому что приходилось долго ждать.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение29.03.2014, 15:53 


31/03/06
1384
Начнём с основ теории групп и теории алгебраических чисел.
Группой называется множество $G$, на котором задана операция умножения, удовлетворяющая трём условиям:
1. $(ab)c=a(bc)$ (ассоциативность)
2. существует $e$, такой что $e a=a$ (существование левой единицы)
3. существует $a^{-1}$, такой что $a^{-1} a=e$ (cуществование левого обратного элемента)

Здесь $a$, $b$ и $c$ - произвольные элементы $G$, $e$ и $a^{-1}$ принадлежат $G$.

Докажем, что $a e=a$ и $a a^{-1}=e$, то есть левая единица является и правой единицей, а левый обратный элемент является и правым обратным элементом.
Действительно, из $xa=xb$ следует $a=b$ умножением слева на $x^{-1}$, поэтому из $a^{-1} a e=a^{-1} a$ следует $a e=a$.
Далее из $a^{-1} a a^{-1}=a^{-1} e$ следует $a a^{-1}=e$.
Теперь из $a x=b x$ следует $a=b$ умножением справа на $x^{-1}$.

Группа $G$ называется абелевой, если операция умножения коммутативна, то есть $a b=b a$ для любых $a$ и $b$ из $G$.

Множество $G$, удовлетворяющее только условию 1 (ассоциативности) называется полугруппой.
Вместо операции умножения в определении группы можно говорить об операции сложения.
В этом случае роль единицы играет 0.
Кольцом называется множество $G$, на котором заданы операции сложения и умножения, удовлетворяющие следующим условиям:
1. $G$ является абелевой группой по сложению.
2. $G$ является полугруппой по умножению.
3. В $G$ имеют место два дистрибутивных закона: $a(b+c)=ab+ac$ и $(b+c)a=ba+ca$.

Если операция умножения коммутативна, то кольцо называется коммутативным.
В этой теме мы будем рассматривать только коммутативные кольца.

Если существует единица по умножению (которая одновременно правая и левая), то говорят о кольце с единицей.
Полем называется коммутативное кольцо, в котором множество ненулевых элементов является группой по умножению, то есть в котором имеется единица и каждый ненулевой элемент обратим.

Например, $\mathbb{Z}$ и $\mathbb{Z}[\sqrt[n]{2}]$ являются коммутативными кольцами, а $\mathbb{Q}$ и $\mathbb{Q}[\sqrt[n]{2}]$ являются полями.

-------------------------------------------------------------------------------------------

Пусть $A$ - подгруппа группы $G$.
Тогда $G$ разбивается на подмножества вида $g A$, которые называются левыми смежными классами подгруппы $A$.
Левые смежные классы либо совпадают, либо не пересекаются.
Если $g_2^{-1} g_1 \in A$, то $g_1 A=g_2 A$.
Если же $g_2^{-1} g_1 \not \in A$, то $g_1 A$ и $g_2 A$ не имеют общих элементов.
Колличество левых смежных классов называется индексом подгруппы $A$ в группе $G$.
Порядком конечной группы называется колличество её элементов.
Порядок группы $G$ обозначается через $|G|$.
Если $A$ подгруппа конечной группы $G$, то из разбиения $G$ на левые смежные классы следует, что $|G|$ делится на $|A|$.
Вместо левых смежных классов можно рассматривать правые смежные классы вида $A g$.
Подгруппа $A$ называется нормальной, если $g A=A g$ для любого $g \in G$, то есть если левые смежные классы совпадают с правыми.
Условие $g A=A g$ можно также записать в виде $A=g^{-1} A g$.
Определим произведение левых смежных классов по правилу: $(g_1 A) (g_2 A)=(g_1 g_2) A$.
Если $A$ - нормальная подгруппа, то $(g_1 g_2) A$ является множеством всевозможных произведений $(g_1 a_1) (g_2 a_2)$, где $a_1, a_2 \in A$.
Смежные классы нормальной подгруппы образуют группу по умножению, которая называется фактор группой и обозначается $G/A$.
Роль единицы в фактор группе $G/A$ играет сама подгруппа $A$.
В абелевой группе любая подгруппа - нормальная.

-------------------------------------------------------------------------------------------

Для того, чтобы непустое подмножество $A$ группы $G$ было подгруппой необходимо и достаточно, чтобы вместе с любыми двумя элементами $a$ и $b$, $A$ содержало также и $a^{-1} b$.
Если $A$ - конечное подмножество группы $G$, достаточно чтобы вместе с любыми двумя элементами $a$ и $b$, $A$ содержало их произведение $ab$.
Чтобы доказать это, возьмём какой-нибудь $a \in A$ и рассмотрим множество произведений $a x$, где $x$ пробегает все элементы $A$.
Cреди этих произведений нет равных, поэтому $a x$ пробегает все элементы $A$.
В частности, $a x=a$ при некотором $x$, откуда $x=e$, то есть единица принадлежит $A$, и из $a x=e$ следует, что $a^{-1}$ принадлежит $A$.
Поэтому $A$ - подгруппа.

-------------------------------------------------------------------------------------------

Группа называется циклической, если в ней есть такой элемент $g$, что все остальные элементы являются его степенями $g^m$, где $m$ - целые числа.
Если $g$ - какой-либо элемент группы (не обязательно циклической), то степени $g$ образуют циклическую подгруппу.
Если эта подгруппа конечна, то существует минимальное целое положительное число $m$, такое, что $g^m=e$.
Элементами подгруппы являются: $e$, $g$, $g^2$, ..., $g^{m-1}$ (в силу минимальности $m$, среди них нет равных).
Число $m$ называется порядком элемента $g$.
Таким образом, порядок элемента $g$ равен порядку циклической подгруппы, генерируемой этим элементом.

Группа называется тривиальной, если она состоит из одного единичного элемента.
Тривиальная группа является циклической группой порядка 1.

-------------------------------------------------------------------------------------------

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Тогда в $G$ cуществует элемент, порядок которого делится на $p$.
Чтобы доказать это, предположим обратное, и пусть $G$ - такая группа наименьшего порядка, в которой нет такого элемента.
Возьмём какой-либо элемент $g$, отличный от $e$, и пусть $H$ - циклическая подгруппа генерируемая этим элементом.
Согласно предположению, порядок $H$ не делится на $p$, поэтому порядок фактор группы $G/H$ делится на $p$.
Поскольку порядок этой фактор группы меньше порядка $G$, то согласно предположению в $G/H$ есть элемент $aH$, порядок которого делится на $p$.
Тогда порядок элемента $a$ делится на $p$ (поскольку он делится на порядок смежного класса $aH$), что противоречит тому, что такого элемента нет.

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Мы доказали, что в $G$ cуществует элемент, порядок которого делится на $p$.
Из этого следует, что существует элемент, порядок которого равен $p$.
В самом деле, если $p m$ - порядок элемента $g$, то порядок элемента $g^m$ равен $p$.

--------------------------------------------------------------------------------------------

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Пусть $H$ - множество всех элементов этой группы, порядок которых является степенью $p$.
Множество $H$ является подгруппой группы $G$.
Докажем, что порядок фактор группы $G/H$ не делится на $p$.
Предположим обратное, что $|G/H|$ делится на $p$.
Тогда в $G/H$ существует элемент $aH$ порядка $p$, где $a$ не принадлежит $H$.
Поскольку $a^p$ принадлежит $H$, то порядок $a$ является степенью $p$.
Это противоречит тому, что $a$ не принадлежит $H$.

Таким образом, порядок $H$ равен наибольшей степени $p$, на которую делится порядок $G$.

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$, и $p^k$ наибольшая степень $p$, на которую делится этот порядок.

Мы доказали, что существует подгруппа $H$ порядка $p^k$.
Поскольку подгруппа $H$ включает все элементы, порядок которых является степенью $p$, то она является единственной подгруппой порядка $p^k$.

--------------------------------------------------------------------------------------------

Абелева группа $G$ называется прямым произведением подгрупп $H_1$, ..., $H_m$, если любой элемент $g$ группы $G$ однозначно представим в виде произведения $g=h_1...h_m$, где $h_1 \in H_1$, ..., $h_m \in H_m$.

Произведение подгрупп $H_1$...$H_m$ является прямым произведением тогда и только тогда, когда выполняется следующее условие:

1) Пусть $h_1 \in H_1$, ..., $h_m \in H_m$. Тогда из $h_1...h_m=e$ следует $h_1=e$,...,$h_m=e$.

Из этого условия следует:

Любые две из этих подгрупп не имеют общих элементов, кроме единицы $e$.
Все произведения вида $h_1...h_m$ различны.

Пусть $G$ - конечная абелева группа и $|G|=p_1^k_1...p_m^k_m$, где $p_1$, ..., $p_m$ - различные простые числа.
Пусть $H_1$, ..., $H_m$ -подгруппы порядка $p_1^k_1$, ..., $p_m^k_m$.
Мы доказали, что эти подгруппы определены однозначно.
Для них выполняется условие 1).
Произведение этих подгрупп содержит $|G|=p_1^k_1...p_m^k_m$ элементов.
Поэтому $G$ является прямым произведением подгрупп $H_1, ..., H_m$, и любой элемент $g$ группы $G$ однозначно представим в виде произведения $g=h_1...h_m$, где $h_1 \in H_1$, ..., $h_m \in H_m$.

-------------------------------------------------------------------------------------------
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются независимыми, если из $a_1^k_1...a_1^k_n=e$ следует $a_1^k_1=e$, ..., $a_n^k_n=e$, для любых целых чисел $k_1$, ..., $k_n$.
Пусть $A_1$, ..., $A_n$ - циклические подгруппы, генерируемые элементами $a_1$, ..., $a_n$.
Произведение подгрупп $A_1...A_n$ является их прямым произведением тогда и только тогда, когда $a_1$, ..., $a_n$ независимы.
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются её базисом, если они независимы, отличны от единицы $e$, и $G$ является произведением циклических подгрупп, генерируемых этими элементами: $G=A_1...A_n$.

--------------------------------------------------------------------------------------------

Пусть $H$ - конечная абелева группа порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число.
Тогда $H$ представима в виде прямого произведения нетривиальных циклических подгрупп.
Чтобы доказать это предположим обратное, и пусть $H$ -конечная абелева группа наименьшего порядка $p^k$, не представимая в виде прямого произведения нетривиальных циклических подгрупп.

Выберем в $H$ элемент $g$ наибольшего порядка, генерирующий циклическую подгруппу $C$.

Пусть $a$ - какой-либо элемент группы $H$, не принадлежащий подгруппе $C$.
Пусть $v$ - порядок смежного класса $a C$ в фактор группе $H/C$.
Покажем, что можно выбрать такой элемент $b \in a C$, что $b^v=e$.
Если $a^v=e$ положим $b=a$.
Пусть $a^v\neq e$, $a^v=g^n$, где $n$ - целое положительное число.
Пусть $n=n_1 n_2$, где $n_1$ не делится на $p$, а $n_2$ является степенью $p$.
Тогда порядок $a^v$ в $C$ равен $|C|/n_2$, следовательно порядок $a$ в $H$ равен $v |C|/n_2$.
В силу максимальности $|C|$ имеем: $v |C|/n_2\leq |C|$, откуда $v\leq n_2$.
Поскольку $v$ и $n_2$ являются степенями $p$, то $n_2$ делится на $v$, значит и $n$ делится на $v$.
Пусть $b=a g^{-n/v}$.
Тогда $b^v=a^v g^{-n}=g^n g^{-n}=e$, что и требовалось.

Поскольку $b^v=e$, то циклическая подгруппа группы $H$, генерированная элементом $b$ не имеет с $C$ общих элементов, кроме $e$.

В силу минимальности порядка $H$, фактор группа $H/C$ является прямым произведением циклических подгрупп, генерируемых элементами $b_1 C$, ..., $b_m C$, где элементы $b_1$, ..., $b_m$ не принадлежат $C$ и выбраны так, что генерируемые ими циклические подгруппы (группы $H$) не имеют с $C$ общих элементов, кроме $e$.
Пусть $A_1$, ..., $A_m$ - эти циклические подгруппы, генерируемые элементами $b_1$, ..., $b_m$.
Для любых элементов $a_1 \in A_1$, ..., $a_m \in A_m$: если $(a_1 C)...(a_m C)=C$, то $a_1 C=C$, ..., $a_m C=C$, следовательно $a_1$, ..., $a_m$ принадлежат $C$, значит равны $e$.
Поэтому, для любых элементов $a_1 \in A_1$, ..., $a_m \in A_m$ и любого элемента $c \in C$: если $a_1...a_m c=e$, то $(a_1 C)...(a_m C)=c^{-1}C=C$, значит $a_1=e$, ...,$a_m=e$, значит и $c=e$.

Следовательно, группа $H$ является прямым произведением циклических подгрупп $A_1$, ..., $A_m$ и $C$, что противоречит предположению.

-----------------------------------------------------------------------------------------------------------------------------------

Пусть $H$ - конечная абелева группа порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число.
Пусть $H$ является прямым произведением нетривиальных циклических подгрупп $A_1$, ..., $A_m$.
Подгруппы $A_1$, ..., $A_m$ не определяются однозначно группой $H$.
Однако их колличество и порядки определены однозначно с точностью до перестановки.
В частности, $p^m$ равно числу элементов группы $H$, имеющих порядок $p$ (включая в это число единицу $e$, хотя её порядок не равен $p$).
В самом деле, если $(a_1...a_m)^p=e$, где $a_1 \in A_1$, ..., $a_m \in A_m$, то $a_1^p=e$, ..., $a_m^p=e$ в силу независимости элементов $a_1^p$, ...,$a_m^p$.
Поскольку в каждой из циклических подгрупп имеется ровно $p$ элементов порядка $p$ (включяя $e$), то колличество произведений $a_1...a_m$ порядка $p$ (включяя $e$) равно $p^m$.

Пусть теперь $H=A_1...A_m=B_1...B_m$ - два разложения группы $H$ в прямое произведение нетривиальных циклических подгрупп, расположенных в порядке убывания их порядков, то есть $|A_1|\geq...\geq |A_m|$ и $|B_1|\geq...\geq |B_m|$.

Тогда $|A_1|=|B_1$|, ..., $|A_m|=|B_m|$.

Для доказательства этого предположим обратное, и пусть $H$ - абелева группа наименьшего порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число, для которой это неверно.

Для любой абелевой группы $G$ обозначим $G^{(p)}$ множество элементов вида $g^p$, где $g \in G$.
Множество $G^{(p)}$ является подгруппой группы $G$.
Если $G$ - циклическая группа порядка $p^v$, где $v$ - целое положительное число, то $G^{(p)}$ - циклическая группа порядка $p^{v-1}$.

Имеем: $H^{(p)}=A_1^{(p)}...A_m^{(p)}=B_1^{(p)}...B_m^{(p)}$ - два разложения группы $H^{(p)}$ в прямое произведение циклических подгрупп, расположенных в порядке убывания их порядков.
Среди циклических подгрупп $A_1^{(p)}$, ..., $A_m^{(p)}$ и $B_1^{(p)}$, ..., $B_m^{(p)}$ могут быть тривиальные, но колличество нетривиальных подгрупп одинаково среди $A_1^{(p)}$, ..., $A_m^{(p)}$ и среди $B_1^{(p)}$, ..., $B_m^{(p)}$.
Обозначим это колличество через $n$.
Если $n<m$, то все подгруппы $A_{n+1}^{(p)}$, ..., $A_m^{(p)}$ и $B_{n+1}^{(p)}$, ..., $B_m^{(p)}$ - тривиальные, откуда все циклические подгруппы $A_{n+1}$, ..., $A_m$ и $B_{n+1}$, ..., $B_m$ имеют одинаковый порядок $p$.
Если $n=0$, то это противоречит предположению.
Пусть $n>0$.
Поскольку $|H^{(p)}|<|H|$, то ввиду минимальности порядка группы $H$ имеем: $|A_1^{(p)}|=|B_1^{(p)}|$, ..., $|A_n^{(p)}|=|B_n^{(p)}|$, откуда $|A_1|=|B_1|$, ..., $|A_n|=|B_n|$.
Значит $|A_1|=|B_1|$, ..., $|A_m|=|B_m|$, что противоречит предположению.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение29.03.2014, 16:53 
Заслуженный участник
Аватара пользователя


06/10/08
6422
"Количество" пишется с одной 'л' (во многих местах ошибка).
Феликс Шмидель в сообщении #842695 писал(а):
Пусть $G$ - конечная абелева группа и $|G|=p_1^k_1...p_m^k_m$, где $p_1$, ..., $p_m$ - различные простые числа.
Пусть $H_1$, ..., $H_m$ -подгруппы порядка $p_1^k_1$, ..., $p_m^k_m$.
Мы доказали, что эти подгруппы определены однозначно.
Для них выполняется условие 1).
Произведение этих подгрупп содержит $|G|=p_1^k_1...p_m^k_m$ элементов.
Феликс Шмидель в сообщении #842695 писал(а):
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются независимыми, если из $a_1^k_1...a_1^k_n=e$ следует $a_1^k_1=e$, ..., $a_n^k_n=e$, для любых целых чисел $k_1$, ..., $k_n$.
Опечатки с индексами.
Феликс Шмидель в сообщении #842695 писал(а):
В частности, $p^m$ равно числу элементов группы $H$, имеющих порядок $p$ (включая в это число единицу $e$, хотя её порядок не равен $p$).
Некрасиво сформулировано.

С математикой все хорошо.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение29.03.2014, 23:24 


31/03/06
1384
Большое спасибо! Я исправлю это в следующей редакции.

Однако, я вижу только одну опечатку с индексами: вместо $a_1^k_1...a_1^k_n=e$ должно быть $a_1^k_1...a_n^k_n=e$. Есть ещё?

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение29.03.2014, 23:36 
Заслуженный участник
Аватара пользователя


06/10/08
6422
Должно быть $a_1^{k_1}\dots a_n^{k_n} = e$. Сравните: $a_1^k_1\dots a_n^k_n \quad a_1^{k_1}\dots a_n^{k_n}$

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение30.03.2014, 00:17 


31/03/06
1384
Мне всегда это не нравилось, но я не знал, как исправить.
Очень благодарен, что показали.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение01.04.2014, 22:28 


31/03/06
1384
Исправление
------------------

Цитата:
Определим произведение левых смежных классов по правилу: $(g_1 A) (g_2 A)=(g_1 g_2) A$.
Если $A$ - нормальная подгруппа, то $(g_1 g_2) A$ является множеством всевозможных произведений $(g_1 a_1) (g_2 a_2)$, где $a_1, a_2 \in A$.


исправляется на:

Пусть $A$ - нормальная подгруппа группы $G$.
Определим произведение смежных классов по правилу: $(g_1 A) (g_2 A)=(g_1 g_2) A$.
Это определение корректно, так как различные выборы элементов $g_1$ и $g_2$ соответственно из первого и второго смежных классов дают один и тот же смежный класс $(g_1 g_2) A$.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение04.04.2014, 04:27 


31/03/06
1384
Внесём вышеуказанные исправления.

Начнём с основ теории групп и теории алгебраических чисел.

Группой называется множество $G$, на котором задана операция умножения, удовлетворяющая трём условиям:
1. $(ab)c=a(bc)$ (ассоциативность)
2. существует $e$, такой что $e a=a$ (существование левой единицы)
3. существует $a^{-1}$, такой что $a^{-1} a=e$ (cуществование левого обратного элемента)

Здесь $a$, $b$ и $c$ - произвольные элементы $G$, $e$ и $a^{-1}$ принадлежат $G$.

Докажем, что $a e=a$ и $a a^{-1}=e$, то есть левая единица является и правой единицей, а левый обратный элемент является и правым обратным элементом.
Действительно, из $xa=xb$ следует $a=b$ умножением слева на $x^{-1}$, поэтому из $a^{-1} a e=a^{-1} a$ следует $a e=a$.
Далее из $a^{-1} a a^{-1}=a^{-1} e$ следует $a a^{-1}=e$.
Теперь из $a x=b x$ следует $a=b$ умножением справа на $x^{-1}$.

Группа $G$ называется абелевой, если операция умножения коммутативна, то есть $a b=b a$ для любых $a$ и $b$ из $G$.

Множество $G$, удовлетворяющее только условию 1 (ассоциативности) называется полугруппой.
Вместо операции умножения в определении группы можно говорить об операции сложения.
В этом случае роль единицы играет 0.
Кольцом называется множество $G$, на котором заданы операции сложения и умножения, удовлетворяющие следующим условиям:
1. $G$ является абелевой группой по сложению.
2. $G$ является полугруппой по умножению.
3. В $G$ имеют место два дистрибутивных закона: $a(b+c)=ab+ac$ и $(b+c)a=ba+ca$.

Если операция умножения коммутативна, то кольцо называется коммутативным.
В этой теме мы будем рассматривать только коммутативные кольца.

Если существует единица по умножению (которая одновременно правая и левая), то говорят о кольце с единицей.
Полем называется коммутативное кольцо, в котором множество ненулевых элементов является группой по умножению, то есть в котором имеется единица и каждый ненулевой элемент обратим.

Например, $\mathbb{Z}$ и $\mathbb{Z}[\sqrt[n]{2}]$ являются коммутативными кольцами, а $\mathbb{Q}$ и $\mathbb{Q}[\sqrt[n]{2}]$ являются полями.

-------------------------------------------------------------------------------------------

Пусть $A$ - подгруппа группы $G$.
Тогда $G$ разбивается на подмножества вида $g A$, которые называются левыми смежными классами подгруппы $A$.
Левые смежные классы либо совпадают, либо не пересекаются.
Если $g_2^{-1} g_1 \in A$, то $g_1 A=g_2 A$.
Если же $g_2^{-1} g_1 \not \in A$, то $g_1 A$ и $g_2 A$ не имеют общих элементов.
Количество левых смежных классов называется индексом подгруппы $A$ в группе $G$.
Порядком конечной группы называется количество её элементов.
Порядок группы $G$ обозначается через $|G|$.
Если $A$ подгруппа конечной группы $G$, то из разбиения $G$ на левые смежные классы следует, что $|G|$ делится на $|A|$.
Вместо левых смежных классов можно рассматривать правые смежные классы вида $A g$.
Подгруппа $A$ называется нормальной, если $g A=A g$ для любого $g \in G$, то есть если левые смежные классы совпадают с правыми.
Условие $g A=A g$ можно также записать в виде $A=g^{-1} A g$.
Пусть $A$ - нормальная подгруппа группы $G$.
Определим произведение смежных классов по правилу: $(g_1 A) (g_2 A)=(g_1 g_2) A$.
Это определение корректно, так как различные выборы элементов $g_1$ и $g_2$ соответственно из первого и второго смежных классов дают один и тот же смежный класс $(g_1 g_2) A$.
Смежные классы нормальной подгруппы образуют группу по умножению, которая называется фактор группой и обозначается $G/A$.
Роль единицы в фактор группе $G/A$ играет сама подгруппа $A$.
В абелевой группе любая подгруппа - нормальная.

-------------------------------------------------------------------------------------------

Для того, чтобы непустое подмножество $A$ группы $G$ было подгруппой необходимо и достаточно, чтобы вместе с любыми двумя элементами $a$ и $b$, $A$ содержало также и $a^{-1} b$.
Если $A$ - конечное подмножество группы $G$, достаточно чтобы вместе с любыми двумя элементами $a$ и $b$, $A$ содержало их произведение $ab$.
Чтобы доказать это, возьмём какой-нибудь $a \in A$ и рассмотрим множество произведений $a x$, где $x$ пробегает все элементы $A$.
Cреди этих произведений нет равных, поэтому $a x$ пробегает все элементы $A$.
В частности, $a x=a$ при некотором $x$, откуда $x=e$, то есть единица принадлежит $A$, и из $a x=e$ следует, что $a^{-1}$ принадлежит $A$.
Поэтому $A$ - подгруппа.

-------------------------------------------------------------------------------------------

Группа называется циклической, если в ней есть такой элемент $g$, что все остальные элементы являются его степенями $g^m$, где $m$ - целые числа.
Если $g$ - какой-либо элемент группы (не обязательно циклической), то степени $g$ образуют циклическую подгруппу.
Если эта подгруппа конечна, то существует минимальное целое положительное число $m$, такое, что $g^m=e$.
Элементами подгруппы являются: $e$, $g$, $g^2$, ..., $g^{m-1}$ (в силу минимальности $m$, среди них нет равных).
Число $m$ называется порядком элемента $g$.
Таким образом, порядок элемента $g$ равен порядку циклической подгруппы, генерируемой этим элементом.

Группа называется тривиальной, если она состоит из одного единичного элемента.
Тривиальная группа является циклической группой порядка 1.

-------------------------------------------------------------------------------------------

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Тогда в $G$ cуществует элемент, порядок которого делится на $p$.
Чтобы доказать это, предположим обратное, и пусть $G$ - такая группа наименьшего порядка, в которой нет такого элемента.
Возьмём какой-либо элемент $g$, отличный от $e$, и пусть $H$ - циклическая подгруппа генерируемая этим элементом.
Согласно предположению, порядок $H$ не делится на $p$, поэтому порядок фактор группы $G/H$ делится на $p$.
Поскольку порядок этой фактор группы меньше порядка $G$, то согласно предположению в $G/H$ есть элемент $aH$, порядок которого делится на $p$.
Тогда порядок элемента $a$ делится на $p$ (поскольку он делится на порядок смежного класса $aH$), что противоречит тому, что такого элемента нет.

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Мы доказали, что в $G$ cуществует элемент, порядок которого делится на $p$.
Из этого следует, что существует элемент, порядок которого равен $p$.
В самом деле, если $p m$ - порядок элемента $g$, то порядок элемента $g^m$ равен $p$.

--------------------------------------------------------------------------------------------

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Пусть $H$ - множество всех элементов этой группы, порядок которых является степенью $p$.
Множество $H$ является подгруппой группы $G$.
Докажем, что порядок фактор группы $G/H$ не делится на $p$.
Предположим обратное, что $|G/H|$ делится на $p$.
Тогда в $G/H$ существует элемент $aH$ порядка $p$, где $a$ не принадлежит $H$.
Поскольку $a^p$ принадлежит $H$, то порядок $a$ является степенью $p$.
Это противоречит тому, что $a$ не принадлежит $H$.

Таким образом, порядок $H$ равен наибольшей степени $p$, на которую делится порядок $G$.

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$, и $p^k$ наибольшая степень $p$, на которую делится этот порядок.

Мы доказали, что существует подгруппа $H$ порядка $p^k$.
Поскольку подгруппа $H$ включает все элементы, порядок которых является степенью $p$, то она является единственной подгруппой порядка $p^k$.

--------------------------------------------------------------------------------------------

Абелева группа $G$ называется прямым произведением подгрупп $H_1$, ..., $H_m$, если любой элемент $g$ группы $G$ однозначно представим в виде произведения $g=h_1...h_m$, где $h_1 \in H_1$, ..., $h_m \in H_m$.

Произведение подгрупп $H_1$...$H_m$ является прямым произведением тогда и только тогда, когда выполняется следующее условие:

(1) Пусть $h_1 \in H_1$, ..., $h_m \in H_m$. Тогда из $h_1...h_m=e$ следует $h_1=e$,...,$h_m=e$.

Из этого условия следует:

Любые две из этих подгрупп не имеют общих элементов, кроме единицы $e$.
Все произведения вида $h_1...h_m$ различны.

Пусть $G$ - конечная абелева группа и $|G|=p_1^{k_1}...p_m^{k_m}$, где $p_1$, ..., $p_m$ - различные простые числа.
Пусть $H_1$, ..., $H_m$ -подгруппы порядка $p_1^{k_1}$, ..., $p_m^{k_m}$.
Мы доказали, что эти подгруппы определены однозначно.
Для них выполняется условие 1).
Произведение этих подгрупп содержит $|G|=p_1^{k_1}...p_m^{k_m}$ элементов.
Поэтому $G$ является прямым произведением подгрупп $H_1, ..., H_m$, и любой элемент $g$ группы $G$ однозначно представим в виде произведения $g=h_1...h_m$, где $h_1 \in H_1$, ..., $h_m \in H_m$.

-------------------------------------------------------------------------------------------
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются независимыми, если из $a_1^{k_1}...a_1^{k_n}=e$ следует $a_1^{k_1}=e$, ..., $a_n^{k_n}=e$, для любых целых чисел $k_1$, ..., $k_n$.
Пусть $A_1$, ..., $A_n$ - циклические подгруппы, генерируемые элементами $a_1$, ..., $a_n$.
Произведение подгрупп $A_1...A_n$ является их прямым произведением тогда и только тогда, когда $a_1$, ..., $a_n$ независимы.
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются её базисом, если они независимы, отличны от единицы $e$, и $G$ является произведением циклических подгрупп, генерируемых этими элементами: $G=A_1...A_n$.

--------------------------------------------------------------------------------------------

Пусть $H$ - конечная абелева группа порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число.
Тогда $H$ представима в виде прямого произведения нетривиальных циклических подгрупп.
Чтобы доказать это предположим обратное, и пусть $H$ -конечная абелева группа наименьшего порядка $p^k$, не представимая в виде прямого произведения нетривиальных циклических подгрупп.

Выберем в $H$ элемент $g$ наибольшего порядка, генерирующий циклическую подгруппу $C$.

Пусть $a$ - какой-либо элемент группы $H$, не принадлежащий подгруппе $C$.
Пусть $v$ - порядок смежного класса $a C$ в фактор группе $H/C$.
Покажем, что можно выбрать такой элемент $b \in a C$, что $b^v=e$.
Если $a^v=e$ положим $b=a$.
Пусть $a^v\neq e$, $a^v=g^n$, где $n$ - целое положительное число.
Пусть $n=n_1 n_2$, где $n_1$ не делится на $p$, а $n_2$ является степенью $p$.
Тогда порядок $a^v$ в $C$ равен $|C|/n_2$, следовательно порядок $a$ в $H$ равен $v |C|/n_2$.
В силу максимальности $|C|$ имеем: $v |C|/n_2\leq |C|$, откуда $v\leq n_2$.
Поскольку $v$ и $n_2$ являются степенями $p$, то $n_2$ делится на $v$, значит и $n$ делится на $v$.
Пусть $b=a g^{-n/v}$.
Тогда $b^v=a^v g^{-n}=g^n g^{-n}=e$, что и требовалось.

Поскольку $b^v=e$, то циклическая подгруппа группы $H$, генерированная элементом $b$ не имеет с $C$ общих элементов, кроме $e$.

В силу минимальности порядка $H$, фактор группа $H/C$ является прямым произведением циклических подгрупп, генерируемых элементами $b_1 C$, ..., $b_m C$, где элементы $b_1$, ..., $b_m$ не принадлежат $C$ и выбраны так, что генерируемые ими циклические подгруппы (группы $H$) не имеют с $C$ общих элементов, кроме $e$.
Пусть $A_1$, ..., $A_m$ - эти циклические подгруппы, генерируемые элементами $b_1$, ..., $b_m$.
Для любых элементов $a_1 \in A_1$, ..., $a_m \in A_m$: если $(a_1 C)...(a_m C)=C$, то $a_1 C=C$, ..., $a_m C=C$, следовательно $a_1$, ..., $a_m$ принадлежат $C$, значит равны $e$.
Поэтому, для любых элементов $a_1 \in A_1$, ..., $a_m \in A_m$ и любого элемента $c \in C$: если $a_1...a_m c=e$, то $(a_1 C)...(a_m C)=c^{-1}C=C$, значит $a_1=e$, ...,$a_m=e$, значит и $c=e$.

Следовательно, группа $H$ является прямым произведением циклических подгрупп $A_1$, ..., $A_m$ и $C$, что противоречит предположению.

-----------------------------------------------------------------------------------------------------------------------------------

Пусть $H$ - конечная абелева группа порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число.
Пусть $H$ является прямым произведением нетривиальных циклических подгрупп $A_1$, ..., $A_m$.
Подгруппы $A_1$, ..., $A_m$ не определяются однозначно группой $H$.
Однако их количество и порядки определены однозначно с точностью до перестановки.
В частности, $p^m$ равно числу таких элементов $x$ группы $H$, что $x^p=e$.
В самом деле, если $(a_1...a_m)^p=e$, где $a_1 \in A_1$, ..., $a_m \in A_m$, то $a_1^p=e$, ..., $a_m^p=e$ в силу условия (1) прямого произведения.
Поскольку в каждой из циклических подгрупп $A_i$ имеется ровно $p$ таких элементов $x$, что $x^p=e$ , то количество таких произведений $a_1...a_m$, что $(a_1...a_m)^p=e$ равно $p^m$.

Пусть теперь $H=A_1...A_m=B_1...B_m$ - два разложения группы $H$ в прямое произведение нетривиальных циклических подгрупп, расположенных в порядке убывания их порядков, то есть $|A_1|\geq...\geq |A_m|$ и $|B_1|\geq...\geq |B_m|$.

Тогда $|A_1|=|B_1$|, ..., $|A_m|=|B_m|$.

Для доказательства этого предположим обратное, и пусть $H$ - абелева группа наименьшего порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число, для которой это неверно.

Для любой абелевой группы $G$ обозначим $G^{(p)}$ множество элементов вида $g^p$, где $g \in G$.
Множество $G^{(p)}$ является подгруппой группы $G$.
Если $G$ - циклическая группа порядка $p^v$, где $v$ - целое положительное число, то $G^{(p)}$ - циклическая группа порядка $p^{v-1}$.

Имеем: $H^{(p)}=A_1^{(p)}...A_m^{(p)}=B_1^{(p)}...B_m^{(p)}$ - два разложения группы $H^{(p)}$ в прямое произведение циклических подгрупп, расположенных в порядке убывания их порядков.
Среди циклических подгрупп $A_1^{(p)}$, ..., $A_m^{(p)}$ и $B_1^{(p)}$, ..., $B_m^{(p)}$ могут быть тривиальные, но количество нетривиальных подгрупп одинаково среди $A_1^{(p)}$, ..., $A_m^{(p)}$ и среди $B_1^{(p)}$, ..., $B_m^{(p)}$.
Обозначим это количество через $n$.
Если $n<m$, то все подгруппы $A_{n+1}^{(p)}$, ..., $A_m^{(p)}$ и $B_{n+1}^{(p)}$, ..., $B_m^{(p)}$ - тривиальные, откуда все циклические подгруппы $A_{n+1}$, ..., $A_m$ и $B_{n+1}$, ..., $B_m$ имеют одинаковый порядок $p$.
Если $n=0$, то это противоречит предположению.
Пусть $n>0$.
Поскольку $|H^{(p)}|<|H|$, то ввиду минимальности порядка группы $H$ имеем: $|A_1^{(p)}|=|B_1^{(p)}|$, ..., $|A_n^{(p)}|=|B_n^{(p)}|$, откуда $|A_1|=|B_1|$, ..., $|A_n|=|B_n|$.
Значит $|A_1|=|B_1|$, ..., $|A_m|=|B_m|$, что противоречит предположению.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение05.04.2014, 17:47 


31/03/06
1384
Среди независимых элементов не должно быть $e$.

Исправление
------------------

Цитата:
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются независимыми, если из $a_1^{k_1}...a_1^{k_n}=e$ следует $a_1^{k_1}=e$, ..., $a_n^{k_n}=e$, для любых целых чисел $k_1$, ..., $k_n$.
Пусть $A_1$, ..., $A_n$ - циклические подгруппы, генерируемые элементами $a_1$, ..., $a_n$.
Произведение подгрупп $A_1...A_n$ является их прямым произведением тогда и только тогда, когда $a_1$, ..., $a_n$ независимы.
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются её базисом, если они независимы, отличны от единицы $e$, и $G$ является произведением циклических подгрупп, генерируемых этими элементами: $G=A_1...A_n$.


Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются независимыми, если они отличны от $e$, и из $a_1^{k_1}...a_1^{k_n}=e$ следует $a_1^{k_1}=e$, ..., $a_n^{k_n}=e$, для любых целых чисел $k_1$, ..., $k_n$.
Пусть $A_1$, ..., $A_n$ - нетривиальные циклические подгруппы, генерируемые элементами $a_1$, ..., $a_n$.
Произведение подгрупп $A_1...A_n$ является их прямым произведением тогда и только тогда, когда $a_1$, ..., $a_n$ независимы.
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются её базисом, если они независимы, и $G$ является произведением циклических подгрупп, генерируемых этими элементами: $G=A_1...A_n$.

 Профиль  
                  
 
 Re: Введение в теорию алгебраических чисел
Сообщение05.04.2014, 20:18 


31/03/06
1384
Внесём это исправление.

Начнём с основ теории групп и теории алгебраических чисел.

Группой называется множество $G$, на котором задана операция умножения, удовлетворяющая трём условиям:
1. $(ab)c=a(bc)$ (ассоциативность)
2. существует $e$, такой что $e a=a$ (существование левой единицы)
3. существует $a^{-1}$, такой что $a^{-1} a=e$ (cуществование левого обратного элемента)

Здесь $a$, $b$ и $c$ - произвольные элементы $G$, $e$ и $a^{-1}$ принадлежат $G$.

Докажем, что $a e=a$ и $a a^{-1}=e$, то есть левая единица является и правой единицей, а левый обратный элемент является и правым обратным элементом.
Действительно, из $xa=xb$ следует $a=b$ умножением слева на $x^{-1}$, поэтому из $a^{-1} a e=a^{-1} a$ следует $a e=a$.
Далее из $a^{-1} a a^{-1}=a^{-1} e$ следует $a a^{-1}=e$.
Теперь из $a x=b x$ следует $a=b$ умножением справа на $x^{-1}$.

Группа $G$ называется абелевой, если операция умножения коммутативна, то есть $a b=b a$ для любых $a$ и $b$ из $G$.

Множество $G$, удовлетворяющее только условию 1 (ассоциативности) называется полугруппой.
Вместо операции умножения в определении группы можно говорить об операции сложения.
В этом случае роль единицы играет 0.
Кольцом называется множество $G$, на котором заданы операции сложения и умножения, удовлетворяющие следующим условиям:
1. $G$ является абелевой группой по сложению.
2. $G$ является полугруппой по умножению.
3. В $G$ имеют место два дистрибутивных закона: $a(b+c)=ab+ac$ и $(b+c)a=ba+ca$.

Если операция умножения коммутативна, то кольцо называется коммутативным.
В этой теме мы будем рассматривать только коммутативные кольца.

Если существует единица по умножению (которая одновременно правая и левая), то говорят о кольце с единицей.
Полем называется коммутативное кольцо, в котором множество ненулевых элементов является группой по умножению, то есть в котором имеется единица и каждый ненулевой элемент обратим.

Например, $\mathbb{Z}$ и $\mathbb{Z}[\sqrt[n]{2}]$ являются коммутативными кольцами, а $\mathbb{Q}$ и $\mathbb{Q}[\sqrt[n]{2}]$ являются полями.

-------------------------------------------------------------------------------------------

Пусть $A$ - подгруппа группы $G$.
Тогда $G$ разбивается на подмножества вида $g A$, которые называются левыми смежными классами подгруппы $A$.
Левые смежные классы либо совпадают, либо не пересекаются.
Если $g_2^{-1} g_1 \in A$, то $g_1 A=g_2 A$.
Если же $g_2^{-1} g_1 \not \in A$, то $g_1 A$ и $g_2 A$ не имеют общих элементов.
Количество левых смежных классов называется индексом подгруппы $A$ в группе $G$.
Порядком конечной группы называется количество её элементов.
Порядок группы $G$ обозначается через $|G|$.
Если $A$ подгруппа конечной группы $G$, то из разбиения $G$ на левые смежные классы следует, что $|G|$ делится на $|A|$.
Вместо левых смежных классов можно рассматривать правые смежные классы вида $A g$.
Подгруппа $A$ называется нормальной, если $g A=A g$ для любого $g \in G$, то есть если левые смежные классы совпадают с правыми.
Условие $g A=A g$ можно также записать в виде $A=g^{-1} A g$.
Пусть $A$ - нормальная подгруппа группы $G$.
Определим произведение смежных классов по правилу: $(g_1 A) (g_2 A)=(g_1 g_2) A$.
Это определение корректно, так как различные выборы элементов $g_1$ и $g_2$ соответственно из первого и второго смежных классов дают один и тот же смежный класс $(g_1 g_2) A$.
Смежные классы нормальной подгруппы образуют группу по умножению, которая называется фактор группой и обозначается $G/A$.
Роль единицы в фактор группе $G/A$ играет сама подгруппа $A$.
В абелевой группе любая подгруппа - нормальная.

-------------------------------------------------------------------------------------------

Для того, чтобы непустое подмножество $A$ группы $G$ было подгруппой необходимо и достаточно, чтобы вместе с любыми двумя элементами $a$ и $b$, $A$ содержало также и $a^{-1} b$.
Если $A$ - конечное подмножество группы $G$, достаточно чтобы вместе с любыми двумя элементами $a$ и $b$, $A$ содержало их произведение $ab$.
Чтобы доказать это, возьмём какой-нибудь $a \in A$ и рассмотрим множество произведений $a x$, где $x$ пробегает все элементы $A$.
Cреди этих произведений нет равных, поэтому $a x$ пробегает все элементы $A$.
В частности, $a x=a$ при некотором $x$, откуда $x=e$, то есть единица принадлежит $A$, и из $a x=e$ следует, что $a^{-1}$ принадлежит $A$.
Поэтому $A$ - подгруппа.

-------------------------------------------------------------------------------------------

Группа называется циклической, если в ней есть такой элемент $g$, что все остальные элементы являются его степенями $g^m$, где $m$ - целые числа.
Если $g$ - какой-либо элемент группы (не обязательно циклической), то степени $g$ образуют циклическую подгруппу.
Если эта подгруппа конечна, то существует минимальное целое положительное число $m$, такое, что $g^m=e$.
Элементами подгруппы являются: $e$, $g$, $g^2$, ..., $g^{m-1}$ (в силу минимальности $m$, среди них нет равных).
Число $m$ называется порядком элемента $g$.
Таким образом, порядок элемента $g$ равен порядку циклической подгруппы, генерируемой этим элементом.

Группа называется тривиальной, если она состоит из одного единичного элемента.
Тривиальная группа является циклической группой порядка 1.

-------------------------------------------------------------------------------------------

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Тогда в $G$ cуществует элемент, порядок которого делится на $p$.
Чтобы доказать это, предположим обратное, и пусть $G$ - такая группа наименьшего порядка, в которой нет такого элемента.
Возьмём какой-либо элемент $g$, отличный от $e$, и пусть $H$ - циклическая подгруппа генерируемая этим элементом.
Согласно предположению, порядок $H$ не делится на $p$, поэтому порядок фактор группы $G/H$ делится на $p$.
Поскольку порядок этой фактор группы меньше порядка $G$, то согласно предположению в $G/H$ есть элемент $aH$, порядок которого делится на $p$.
Тогда порядок элемента $a$ делится на $p$ (поскольку он делится на порядок смежного класса $aH$), что противоречит тому, что такого элемента нет.

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Мы доказали, что в $G$ cуществует элемент, порядок которого делится на $p$.
Из этого следует, что существует элемент, порядок которого равен $p$.
В самом деле, если $p m$ - порядок элемента $g$, то порядок элемента $g^m$ равен $p$.

--------------------------------------------------------------------------------------------

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$.
Пусть $H$ - множество всех элементов этой группы, порядок которых является степенью $p$.
Множество $H$ является подгруппой группы $G$.
Докажем, что порядок фактор группы $G/H$ не делится на $p$.
Предположим обратное, что $|G/H|$ делится на $p$.
Тогда в $G/H$ существует элемент $aH$ порядка $p$, где $a$ не принадлежит $H$.
Поскольку $a^p$ принадлежит $H$, то порядок $a$ является степенью $p$.
Это противоречит тому, что $a$ не принадлежит $H$.

Таким образом, порядок $H$ равен наибольшей степени $p$, на которую делится порядок $G$.

Пусть $G$ - конечная абелева группа, порядок которой делится на простое число $p$, и $p^k$ наибольшая степень $p$, на которую делится этот порядок.

Мы доказали, что существует подгруппа $H$ порядка $p^k$.
Поскольку подгруппа $H$ включает все элементы, порядок которых является степенью $p$, то она является единственной подгруппой порядка $p^k$.

--------------------------------------------------------------------------------------------

Абелева группа $G$ называется прямым произведением подгрупп $H_1$, ..., $H_m$, если любой элемент $g$ группы $G$ однозначно представим в виде произведения $g=h_1...h_m$, где $h_1 \in H_1$, ..., $h_m \in H_m$.

Произведение подгрупп $H_1$...$H_m$ является прямым произведением тогда и только тогда, когда выполняется следующее условие:

(1) Пусть $h_1 \in H_1$, ..., $h_m \in H_m$. Тогда из $h_1...h_m=e$ следует $h_1=e$,...,$h_m=e$.

Из этого условия следует:

Любые две из этих подгрупп не имеют общих элементов, кроме единицы $e$.
Все произведения вида $h_1...h_m$ различны.

Пусть $G$ - конечная абелева группа и $|G|=p_1^{k_1}...p_m^{k_m}$, где $p_1$, ..., $p_m$ - различные простые числа.
Пусть $H_1$, ..., $H_m$ -подгруппы порядка $p_1^{k_1}$, ..., $p_m^{k_m}$.
Мы доказали, что эти подгруппы определены однозначно.
Для них выполняется условие (1).
Произведение этих подгрупп содержит $|G|=p_1^{k_1}...p_m^{k_m}$ элементов.
Поэтому $G$ является прямым произведением подгрупп $H_1, ..., H_m$, и любой элемент $g$ группы $G$ однозначно представим в виде произведения $g=h_1...h_m$, где $h_1 \in H_1$, ..., $h_m \in H_m$.

-------------------------------------------------------------------------------------------
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются независимыми, если они отличны от $e$, и из $a_1^{k_1}...a_1^{k_n}=e$ следует $a_1^{k_1}=e$, ..., $a_n^{k_n}=e$, для любых целых чисел $k_1$, ..., $k_n$.
Пусть $A_1$, ..., $A_n$ - нетривиальные циклические подгруппы, генерируемые элементами $a_1$, ..., $a_n$.
Произведение подгрупп $A_1...A_n$ является их прямым произведением тогда и только тогда, когда $a_1$, ..., $a_n$ независимы.
Элементы $a_1$, ..., $a_n$ абелевой группы $G$ называются её базисом, если они независимы, и $G$ является произведением циклических подгрупп, генерируемых этими элементами: $G=A_1...A_n$.
--------------------------------------------------------------------------------------------

Пусть $H$ - конечная абелева группа порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число.
Тогда $H$ представима в виде прямого произведения нетривиальных циклических подгрупп.
Чтобы доказать это предположим обратное, и пусть $H$ -конечная абелева группа наименьшего порядка $p^k$, не представимая в виде прямого произведения нетривиальных циклических подгрупп.

Выберем в $H$ элемент $g$ наибольшего порядка, генерирующий циклическую подгруппу $C$.

Пусть $a$ - какой-либо элемент группы $H$, не принадлежащий подгруппе $C$.
Пусть $v$ - порядок смежного класса $a C$ в фактор группе $H/C$.
Покажем, что можно выбрать такой элемент $b \in a C$, что $b^v=e$.
Если $a^v=e$ положим $b=a$.
Пусть $a^v\neq e$, $a^v=g^n$, где $n$ - целое положительное число.
Пусть $n=n_1 n_2$, где $n_1$ не делится на $p$, а $n_2$ является степенью $p$.
Тогда порядок $a^v$ в $C$ равен $|C|/n_2$, следовательно порядок $a$ в $H$ равен $v |C|/n_2$.
В силу максимальности $|C|$ имеем: $v |C|/n_2\leq |C|$, откуда $v\leq n_2$.
Поскольку $v$ и $n_2$ являются степенями $p$, то $n_2$ делится на $v$, значит и $n$ делится на $v$.
Пусть $b=a g^{-n/v}$.
Тогда $b^v=a^v g^{-n}=g^n g^{-n}=e$, что и требовалось.

Поскольку $b^v=e$, то циклическая подгруппа группы $H$, генерированная элементом $b$ не имеет с $C$ общих элементов, кроме $e$.

В силу минимальности порядка $H$, фактор группа $H/C$ является прямым произведением циклических подгрупп, генерируемых элементами $b_1 C$, ..., $b_m C$, где элементы $b_1$, ..., $b_m$ не принадлежат $C$ и выбраны так, что генерируемые ими циклические подгруппы (группы $H$) не имеют с $C$ общих элементов, кроме $e$.
Пусть $A_1$, ..., $A_m$ - эти циклические подгруппы, генерируемые элементами $b_1$, ..., $b_m$.
Для любых элементов $a_1 \in A_1$, ..., $a_m \in A_m$: если $(a_1 C)...(a_m C)=C$, то $a_1 C=C$, ..., $a_m C=C$, следовательно $a_1$, ..., $a_m$ принадлежат $C$, значит равны $e$.
Поэтому, для любых элементов $a_1 \in A_1$, ..., $a_m \in A_m$ и любого элемента $c \in C$: если $a_1...a_m c=e$, то $(a_1 C)...(a_m C)=c^{-1}C=C$, значит $a_1=e$, ...,$a_m=e$, значит и $c=e$.

Следовательно, группа $H$ является прямым произведением циклических подгрупп $A_1$, ..., $A_m$ и $C$, что противоречит предположению.

-----------------------------------------------------------------------------------------------------------------------------------

Пусть $H$ - конечная абелева группа порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число.
Пусть $H$ является прямым произведением нетривиальных циклических подгрупп $A_1$, ..., $A_m$.
Подгруппы $A_1$, ..., $A_m$ не определяются однозначно группой $H$.
Однако их количество и порядки определены однозначно с точностью до перестановки.
В частности, $p^m$ равно числу таких элементов $x$ группы $H$, что $x^p=e$.
В самом деле, если $(a_1...a_m)^p=e$, где $a_1 \in A_1$, ..., $a_m \in A_m$, то $a_1^p=e$, ..., $a_m^p=e$ в силу условия (1) прямого произведения.
Поскольку в каждой из циклических подгрупп $A_i$ имеется ровно $p$ таких элементов $x$, что $x^p=e$ , то количество таких произведений $a_1...a_m$, что $(a_1...a_m)^p=e$ равно $p^m$.

Пусть теперь $H=A_1...A_m=B_1...B_m$ - два разложения группы $H$ в прямое произведение нетривиальных циклических подгрупп, расположенных в порядке убывания их порядков, то есть $|A_1|\geq...\geq |A_m|$ и $|B_1|\geq...\geq |B_m|$.

Тогда $|A_1|=|B_1$|, ..., $|A_m|=|B_m|$.

Для доказательства этого предположим обратное, и пусть $H$ - абелева группа наименьшего порядка $p^k$, где $p$ - простое число, $k$ - целое положительное число, для которой это неверно.

Для любой абелевой группы $G$ обозначим $G^{(p)}$ множество элементов вида $g^p$, где $g \in G$.
Множество $G^{(p)}$ является подгруппой группы $G$.
Если $G$ - циклическая группа порядка $p^v$, где $v$ - целое положительное число, то $G^{(p)}$ - циклическая группа порядка $p^{v-1}$.

Имеем: $H^{(p)}=A_1^{(p)}...A_m^{(p)}=B_1^{(p)}...B_m^{(p)}$ - два разложения группы $H^{(p)}$ в прямое произведение циклических подгрупп, расположенных в порядке убывания их порядков.
Среди циклических подгрупп $A_1^{(p)}$, ..., $A_m^{(p)}$ и $B_1^{(p)}$, ..., $B_m^{(p)}$ могут быть тривиальные, но количество нетривиальных подгрупп одинаково среди $A_1^{(p)}$, ..., $A_m^{(p)}$ и среди $B_1^{(p)}$, ..., $B_m^{(p)}$.
Обозначим это количество через $n$.
Если $n<m$, то все подгруппы $A_{n+1}^{(p)}$, ..., $A_m^{(p)}$ и $B_{n+1}^{(p)}$, ..., $B_m^{(p)}$ - тривиальные, откуда все циклические подгруппы $A_{n+1}$, ..., $A_m$ и $B_{n+1}$, ..., $B_m$ имеют одинаковый порядок $p$.
Если $n=0$, то это противоречит предположению.
Пусть $n>0$.
Поскольку $|H^{(p)}|<|H|$, то ввиду минимальности порядка группы $H$ имеем: $|A_1^{(p)}|=|B_1^{(p)}|$, ..., $|A_n^{(p)}|=|B_n^{(p)}|$, откуда $|A_1|=|B_1|$, ..., $|A_n|=|B_n|$.
Значит $|A_1|=|B_1|$, ..., $|A_m|=|B_m|$, что противоречит предположению.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 36 ]  На страницу 1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group