2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 15:07 
Здравствуйте. Имеется следующее задание:
Доказать, что функция
$f(x,y)=(x^2+y^2)sin\frac{1}{x^2+y^2}, \ x^2+y^2\ne0$
$f(x,y)=0,\  x^2+y^2=0$
дифференцируема, но не непрерывно дифференцируема на $\mathds{R}^2$.
Но ведь это функция не дифференцируема в $(0,0)$, так как нет частных производных в этой точке. Или я чего-то не понимаю?

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 15:11 
tech в сообщении #834158 писал(а):
Но ведь это функция не дифференцируема в $(0,0)$, так как нет частных производных в этой точке.

Почему? И частные производные есть, и даже дифференцируемость есть.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 15:18 
ewert
Если мы посчитаем производную $x^2sin\frac{1}{x^2}$ по правилам, а потом подставим 0, то получим ничего.
А если мы найдем предел отношения $(x^2sin\frac{1}{x^2})/x$, $x\to0$, то получим 0. Почему так получается?
Так получается из-за того, что правило взятия производной здесь неприменимо (для точки $0$), так как функция $sin(1/x)$ не имеет производной в $0$?

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 15:34 
tech в сообщении #834165 писал(а):
Так получается из-за того, что правило взятия производной здесь неприменимо (для точки $0$), так как функция $sin(1/x)$ не имеет производной в $0$?

Да, но если не работает одно "правило", то никто не запрещает применить другое -- авось и сработает. Вот и проверяйте непосредственное определение производной и диифференцируемости -- ровно так же, как и в одномерном случае.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 15:38 
tech в сообщении #834165 писал(а):
Так получается из-за того, что правило взятия производной здесь неприменимо (для точки $0$), так как функция $sin(1/x)$ не имеет производной в $0$?

Она там вообще не определена. Так что же Вы дифференцируете?
Видимо, другую функцию. :wink:

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 18:19 
Аватара пользователя
tech, у Вас же функция кусочно-заданная. И почему вы взяли тот "кусок", а не "этот" для взятия производной?

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 18:44 

(Оффтоп)

Otta в сообщении #834175 писал(а):
Она там вообще не определена. Так что же Вы дифференцируете?

В принципе, не криминал: не определена -- значит, и не дифференцируема. Всё в порядке.

Кроме того, она всё-таки определена. Ведь кто-то из них доопределён же нулём в нуле; и кто же?... -- уж наверное не квадрат.

Короче, это -- ловля блох.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение08.03.2014, 23:08 
ewert
Я боюсь, мы опять о разном.
Имелось в виду, что если уж дифференцируется функция $x\sin\frac 1x$, то всяко не в нуле. А в нуле надо продифференцировать не эту функцию, а именно доопределенную. А это уже другая функция.

Это не ловля блох, это как раз по существу.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение10.03.2014, 18:47 
Аватара пользователя
А почему никто не употребляет волшебное словосочетание "односторонний предел"?

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение10.03.2014, 18:50 
Аватара пользователя
Утундрий, так ТС до этого не дошёл. Вопрос ТС был вообще - а как же мол брать производную в нуле?

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение13.03.2014, 16:32 
Shtorm в сообщении #834228 писал(а):
tech, у Вас же функция кусочно-заданная. И почему вы взяли тот "кусок", а не "этот" для взятия производной?

Хороший вопрос.
Otta,
Но ведь функция $f(x)=xsin\frac1x,\ x\ne0$; $f(x)=0,\ x=0$ недифференцируема в $0$.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение13.03.2014, 16:41 
Докажите.
Впрочем, даже неважно. Вам эта функция вроде и незачем. У Вас квадраты везде, так?

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение13.03.2014, 17:06 
Otta
Да, незачем, у меня везде квадраты.
А для $xsin\frac1x$, доопределенной в $0$, не существует предела $xsin\frac1x/x$ при $x\to0$ (доказывается с помощью двух последовательностей и определения предела функции по Гейне), что равносильно отсутствию производной.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение13.03.2014, 17:22 
tech в сообщении #836412 писал(а):
А для $xsin\frac1x$, доопределенной в $0$, не существует предела $xsin\frac1x/x$

Все верно, а для Вашей соответствующий предел - существует. И производная, значит, тоже.

(Оффтоп)

Я свой пример приводила безотносительно к Вашему для других целей. Чтобы Вас не путать, поправлю цитату, смысл не изменится:
Цитата:
Имелось в виду, что если уж дифференцируется функция $x^2\sin\frac 1{x^2}$, то всяко не в нуле. А в нуле надо продифференцировать не эту функцию, а именно доопределенную. А это уже другая функция.

PS Но как я понимаю, Вы разобрались, можно не отвечать.

 
 
 
 Re: Дифференцирумость функций нескольких переменных
Сообщение13.03.2014, 19:40 
Аватара пользователя
tech, может быть, если переписать заданную функцию в виде:

$$
f(x,y)=\begin{cases}
 (x^2+y^2)\sin\frac{1}{x^2+y^2},&\text{если $x^2+y^2\ne0$;}\\
 0,&\text{если $x^2+y^2=0$.}
 \end{cases}
$$

то может быть понятно будет? Видите, в нуле нормальное такое значение.

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group