Идея
Николы Бурбаки состояла в унификации архитектуры всей математики. Однако, я согласен с Muninом в том, что «эта программа была реализована во второй трети 20 века, и тогда же – сметена бурным валом новых тенденций. Так что сегодня математика существует уже в пост-бурбакистском мире, и возможно даже, в пост-пост-бурбакистском». Я думаю, что сейчас теория множеств является единым фундаментом преобладающей части современной математики. Однако, идея механического формального вывода из аксиоматики представляется мне малоперспективной, как для получения существенных математических результатов, так и их понимания (и, таким образом, мало способствуют наведению порядка в голове). Формальный вывод из простых аксиом формальной арифметики даже таких элементарных вещей как коммутативность умножения натуральных чисел весьма громоздок. Сейчас обычно доказательства, получаемые и принимаемые работающими математиками в какой-либо области математики хоть и являются дедуктивными следствиями из предыдущих аксиом и теорем, но их строгость состоит не в формальном выводе, а в их соответствии математической интуиции – правильным способам математического рассуждения в данной области. И хотя разные области математики могут иметь различные собственные интуиции, но единый фундамент математики позволяет использовать результаты из одной ее области в другой, например, из топологии в функциональном анализе.
Цитата:
Какие книги вы порекомендуете, чтобы прямо вот теоремками от самого низа до основных всех математических объектов (например до теории чисел, и до классического анализа, и до геометрий, до всякой дискретки, и до тервера - последнее самое главное)
С учетом написанного выше и ограниченности моего знания математики, я могу предложить Вашему вниманию следующие книги, которые можно поискать, например,
здесь: Р. Энгелькинг «Общая топология», Карл Фейс «Алгебра: кольца, модули и категории», А. Н. Колмогоров, С. В. Фомин «Элементы теории функций и функционального анализа», Николай Владимирович Ефимов «Высшая геометрия». Первые три книги имеют теоретико-множественное введение. Я думаю, что подобные книги по теорверу тоже должны быть, поскольку есть аксиоматика Колмогорова теории вероятностей.
Цитата:
где можно почитать про сами аксиоматики и их проблемы (на качественном уровне хотя бы, что бы представлять что есть что)
Я могу предложить Вашему вниманию нигу Карла Подниекса «
Вокруг теоремы Геделя». Я смутно припоминаю, что в ней были некоторые ляпы, но мне кажется, что, в общем, книга читабельная.