Уважаемые участники форума, в рамках данной темы предлагается обсудить вопросы, касающиеся операторов спинового и орбитального моментов электрона, а также некоторые вопросы, касающиеся расширенного применения уравнений Дирака .
В данном сообщении и последующих сообщениях, следуя Ахиезеру-Берестецкому и Ландсбергу, гамма матрицы Дирака имеют вид
Координатные индексы в 4-свертках принимают значения
. Кроме того принято
. Таким образом
и мы имеем дело с индексацией 4-пространства вида
Вопрос о неправомерности принятого выражения для оператора спинового момента дираковского электрона рассматривался ранее в рамках темы "Волновая природа микромира", (см. сообщения
post668254.html#p668254,
post669455.html#p669455 и
post670653.html#p670653), по-моему, необоснованно отправленной в пургаторий (г.г. модераторы, ради бога извините).
Напомню суть указанного вопроса. Принятый "стандартный" оператор спинового момента дираковского свободного электрона
характеризуется собственными функциями, которые в общем случае не являются решениями уравнений Дирака, а определяемый данным оператором спиновый момент свободного электрона не сохраняется во времени. В то же время для уравнения Дирака можно получить другой оператор спина
который является произведением проектирующего оператора уравнения Дирака
на вышеуказанный стандартный оператор спинового момента.
Новому оператору отвечает сохраняющийся спиновый момент, который в случае покоящегося электрона характеризуется единственной компонентой
, а в случае движущегося электрона в соответствии с закономерностями СТО характеризуется несколькими компонентами, причем модуль спинмомента здесь по-прежнему равен
. При этом собственные функции нового оператора являются решениями уравнения Дирака.
В части орбитального момента картина примерно та же. Принятый оператор орбитального момента
характеризуется собственными функциями, которые в общем случае не являются решениями уравнений Дирака, а определяемый данным оператором орбитальный момент свободного электрона в общем случае не сохраняется во времени.
Здесь также можно получить новый оператор, равный произведению проектирующего оператора уравнения Дирака на принятый оператор орбитального момента. Собственные функции нового оператора отвечают уравнениям Дирака, а определяемый им орбитальный момент электрона сохраняется во времени. При этом сумма новых операторов спинового и орбитального моментов электрона остается равной сумме известных операторов моментов.
Указанные новые операторы моментов могут быть получены вариационным методом при использовании уточненного лагранжиана уравнений Дирака, который отличается от принятого (см. Ахиезер, Берестецкий, КЭД, 1969, (8.8.1)) добавочным членом
равным дивергенции вектора
, и поэтому не изменяющим вида волновых уравнений.
Главный же вопрос, предлагаемый к рассмотрению в теме, касается использования отдельных уравнений дираковского типа для электронов и позитронов. Эти уравнения для свободных частиц имеют вид
Их решения являются совокупностью решений спинорного уравнения второго порядка типа Клейна-Гордона (УКГ)
Использование совокупности уравнений (2a, 2b) или уравнения второго порядка (2) дает более полное и естественное описание электронно-позитронных волновых функций. При этом появляется возможность отказа от ряда формальных математических приемов, в частности от использования нормального произведения операторов, а также от метода вторичного квантования при его замене методом квазиклассического описания квантовых процессов, см.
авторскую статью, формулы (17, 18) и сопутствующий текст.
Лагранжиан уравнения (2) имеет обычный вид, характерный для УКГ,
, а лагранжианы уравнений (2a, 2b), выбираемые из условия отдельного сохранения спинового и орбитального моментов и согласования с лагранжианом (3), имеют вид
где знаки "-" и "+" отвечают соответственно электронному и позитронному уравнениям Дирака (2a) и (2b). Использование терминов "электронное" и "позитронное" уравнения Дирака связаны с тем обстоятельством, что названным уравнениям отвечает отрицательный и положительный знаки заряда, определяемые при использовании вариационной методики Лагранжа.
Выбранным лагранжианам отвечают определяемые по известным формулам вариационного формализма единые выражения для 4-вектора плотности электрического заряда-тока, канонического тензора энергии-импульса и тензоров спинового и орбитального моментов (см. формулы (5, 6, 7, 8)
в данной статье). Истоки всех названных тензоров равны нулю, что обеспечивает сохранение получаемых на их основе интегральных показателей поля - электрического заряда, энергии-импульса, спинового и орбитального моментов.
Каждая из вышеприведенных систем уравнений (2a) и (2b) обладает двумя семействами решений вида
с положительной и отрицательной частотой осцилляции. При этом основному электронному решению отвечает отрицательная частота осцилляции в решениях уравнения (2a), а основному позитронному решению - положительная частота в (2b). Положительно-частотное же решение уравнения (2a) и отрицательно-частотное решение уравнения (2b) отвечают "малым" добавкам к основному позитронному решению уравнения (2b) и, соответственно к основному решению электронного уравнения (2a). Таким образом, в общем случае отрицательно-частотные решения системы уравнений (2a) и (2b) или уравнений (2) отвечает электронному состоянию, а положительно-частотные решения этих уравнений - позитронному состоянию. Следует заметить, что отдельно взятые неосновные решения уравнений электрона и позитрона характеризуются отрицательной энергией, и не существуют в виде явно наблюдаемых состояний.
Операторы динамических переменных для уравнения Клейна-Гордона (2) совпадают с их известными стандартными значениями. В случае уравнений Дирака (2a) или (2b) операторы динамических переменных являются антикоммутаторами стандартных операторов с оператором заряда частицы
При этом операторы заряда и энергии-импульса отвечают стандартным операторам названных переменных, а операторы спинового и орбитального моментов равны произведению проектирующих операторов указанных уравнений на стандартные операторы моментов, что для электронного уравнения Дирака уже отмечалось в начале сообщения. Более подробную информацию об операторах и методах их получения можно увидеть
в этой помеченной статье.Примеры:
1) Пусть решение для свободного движущегося вдоль оси x электрона в прямоугольной системе координат имеет вид
Оно, являясь решением уравнения типа Клейна-Гордона (2), распадается на основное решение электронного уравнения (2a)
и дополнительное "малое" решение позитронного уравнения (2b)
При этом последние решения также удовлетворяют уравнению (2). Приведенное электронное решение уравнения (2) по сравнению с соответствующим уравнением Дирака имеет то преимущество, что оно является собственной функцией стандартного оператора спинмомента
и отвечает его собственным значениям
Решение же уравнения Дирака (2a) не является собственной функцией стандартного оператора спина.
2) Решение для электрона с минимальной энергией в одномерном "потенциальном ящике" с размерами
с бесконечным запирающим потенциалом, удовлетворяющее уравнению (2), имеет следующий вид:
Оно распадается на основное решение электронного уравнения (2a)
и дополнительное "малое" решение позитронного уравнения (2б)
Здесь
Решение (4) имеет максимум в центре "ящика" и обращается в ноль на его границах. Оно является собственной функцией стандартного оператора спинмомента
и отвечает его собственному значению
В то же время соответствующее стандартное решение уравнения Дирака (4a) не обращается в ноль на границах потенциальной ямы. Оно не является собственной функцией стандартного оператора спина, который приводит к среднему значению спина, равному
Однако последнее решение является собственной функцией вышеуказанного скорректированного оператора спина (1), отвечающей значению спина
Это значение несколько больше значения спина электрона, равного 1/2, что связано со спецификой описания электрона в потенциальном ящике с помощью уравнения Дирака (2a).
Необходимо указать, что при решении задач для связанного электрона во многих случаях граничных условий не существует комбинированных решений типа рассмотренных в наших двух примерах, удовлетворяющих критерию минимума энергии и естественным симметриям. В этих случаях необходимо использование стандартных решений уравнения Дирака (2a). Например, решение типа (4) существует в потенциальном ящике с прямоугольными потенциальными стенками любой высоты, но такого решения не существует в случае наклонных стенок ящика.
Также замечу, что по моим представлением случайное вакуумное электронно-позитронное поле (т.е. нулевые вакуумные состояния согласно КЭД) содержит в равной мере (имеются ввиду средние значения действия) все составляющие электронного и позитронного уравнений.
Жду Ваших критических замечаний и вопросов. О.Львов