2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Согласованная система базисов
Сообщение30.11.2013, 17:04 
Аватара пользователя
svv, конечно, до объединения дополнять не надо, там ничего нового не получим. У меня в голове, видимо, стоял образ всего пространства, вот в нем могут быть еще вектора. Но по условию это не требуется.

 
 
 
 Re: Согласованная система базисов
Сообщение04.12.2013, 18:30 
Аватара пользователя
Если матрицу из векторов $U$ привести к ступенчатому виду, то получится такая матрица: $\begin{pmatrix}
2 & 5 & 2 & 5 & 2\\ 
0 & -7 & 2 & -9 & 0\\ 
0 & 0 & -2 & 1 & 1
\end{pmatrix}$.
Для $V$: $\begin{pmatrix}
2 & 4 & 3 & 4 & 4\\ 
0 & -8 & -1 & -8 & 2\\ 
0 & 0 & -2 & 1 & 1
\end{pmatrix}$.

Как видно - последние вектора совпадают, а проверив, получим, что остальные - линейно независимы.
Поэтому согласованные базисы таковы:

$U\cap V = <(0,0,-2,1,1)>$
$U = <(2,5,2,5,2),\; (0,-7,2,-9,0),\; (0,0,-2,1,1)>$
$V = <(2,4,3,4,4),\; (0,-8,-1,-8,2),\; (0,0,-2,1,1)>$
$U+V = <(2,5,2,5,2),\; (0,-7,2,-9,0),\; (2,4,3,4,4),\; (0,-8,-1,-8,2),\; (0,0,-2,1,1)>$

По-моему верно, но может всё же где-то "накосячил"?

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 00:03 
Аватара пользователя
$\dim (U\cap V)=2$
:-(

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 15:17 
Аватара пользователя
Почему? Если $U$ и $V$ порождаются 3-мя векторами каждой, и из этих векторов у них общий только один, а все остальные линейно независимы. То есть $u_1, u_2$ не могут быть выражены через $v_1, v_2, v_3$.

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 15:57 
Аватара пользователя
Что значит $\dim(U\cap V)=2$ ?
Это необязательно означает, что из набора $u_i$ два вектора можно выразить через $v_1, v_2, v_3$, а один нельзя, т.е., например, $u_1\notin V, u_2\in V, u_3\in V$.
Нет. Это так только в частном случае.

В общем случае это означает, что из $u_1, u_2, u_3$ можно построить две ненулевые линейные комбинации, которые можно также построить из $v_1, v_2, v_3$. И они независимы.
Т.е. существуют линейно независимые векторы $a, b$, такие, что
$a\in U, a\in V$
$b\in U, b\in V$
Линейная оболочка этой пары и есть пересечение подпространств $U$ и $V$.

Вектор $a$ Вы нашли, а $b$ не нашли. Я Вам ниже его предъявлю.

Пусть мы уже проверили, что $\dim U=\dim V =3$. Тогда тот факт, что $\dim (U\cap V)=2$, а не $1$, проявляется, например, в том, что $\dim(U+V)=4$, а не $5$. Это значит, что из совокупности всех данных векторов можно построить две комбинации, «независимо» равные нулю. Вот они:
$u_1 - 2u_2 + u_3 - v_1 + v_3 = 0$
$u_1 + \;\;u_2 - u_3 - v_1 + v_2 = 0$
Убедитесь, что это так.

Теперь перенесем в каждой комбинации векторы $v_i$ в правую часть, а $u_i$ пусть остаются в левой. Тогда в каждом равенстве комбинация $u_i$ и комбинация $v_i$ будут равны друг другу и, следовательно, некоторому вектору, который нам и нужен:
$u_1 - 2u_2 + u_3 = v_1 - v_3 = a =(0, 0, -2, 1, 1)$
$u_1 + \;\;u_2 - u_3 = v_1- v_2 = b = (1, 6, 2, 6, 0)$
Убедитесь, что это так.

И последняя просьба. Подумайте, почему Ваш метод не выявил вектор $b$ (очевидно принадлежащий $U\cap V$ и независимый от вектора $a$), и как надо построить процесс, чтобы гарантированно обнаруживать все такие векторы, а не только те, которые бросаются в глаза.

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 17:16 
Аватара пользователя
svv в сообщении #796601 писал(а):
Подумайте, почему Ваш метод не выявил вектор $b$ (очевидно принадлежащий $U\cap V$ и независимый от вектора $a$), и как надо построить процесс, чтобы гарантированно обнаруживать все такие векторы, а не только те, которые бросаются в глаза.

Не выявил, видимо, потому что я пытался выразить только базисные вектора, а это, как я уже понял, не верно. Точнее верно, но только если повезёт :)
Первая пришедшая в голову модификация метода - не пытаться выразить базисные вектора, а решить систему $au_1+bu_2+cu_3+dv_1+ev_2+fv_3=0$. Но в моём случае это будет система из 5-ти уравнений с 6-ю неизвестными, поэтому нужно решить 3 системы
$au_1+bu_2+cu_3+ev_2+fv_3=0$
$au_1+bu_2+cu_3+dv_1+fv_3=0$
$au_1+bu_2+cu_3+dv_1+ev_2=0$
Видимо одна из них не решается, а две другие дают полученный вами результат.
Метод, конечно, тупой, если важно время, затраченное на решение. А мне оно важно, но пока не придумал как сделать быстрее.

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 18:05 
Аватара пользователя
В моем предыдущем сообщении я показал, что мы получим эти векторы, если мы построим из шести данных векторов нулевые комбинации. Да, это то же самое, что найти фундаментальную систему решений однородной системы уравнений.

В матричных обозначениях $AX=0$, или
$$\begin{bmatrix}{ 2& 3& 4& 2& 1& 2\\ 5& 4& 3& 4&-2& 4\\ 2& 4& 4& 3& 1& 5\\ 5& 3& 2& 4&-2& 3\\ 2& 3& 5& 4& 4& 3\end{bmatrix}\begin{bmatrix}{1& 1\\-2& 1\\ 1&-1\\-1&-1\\ 0& 1\\ 1& 0\end{bmatrix}=\begin{bmatrix}{0& 0\\0& 0\\0& 0\\0& 0\\0& 0\end{bmatrix}$$
Первая матрица $A$ дана (её столбцы — это векторы $u_i, v_i$), вторая матрица $X$ найдена (матрица коэффициентов линейной комбинации, равной нулю). Зная $X$, легко найти базис $U\cap V$. Вопрос в том, как найти $X$.

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 18:25 
Аватара пользователя
DoubleBubble в сообщении #796620 писал(а):
Первая пришедшая в голову модификация метода - не пытаться выразить базисные вектора, а решить систему $au_1+bu_2+cu_3+dv_1+ev_2+fv_3=0$. Но в моём случае это будет система из 5-ти уравнений с 6-ю неизвестными, поэтому нужно решить 3 системы
$au_1+bu_2+cu_3+ev_2+fv_3=0$
$au_1+bu_2+cu_3+dv_1+fv_3=0$
$au_1+bu_2+cu_3+dv_1+ev_2=0$
Видимо одна из них не решается, а две другие дают полученный вами результат.
Очень странное рассуждение. Одно подпространство задано векторами $\vec a_1,\vec a_2,\vec a_3$, другое — векторами $\vec b_1,\vec b_2,\vec b_3$. Векторы из пересечения являются линейными комбинациями и одной тройки, и другой, поэтому получаем систему (в векторной записи) $$x_1\vec a_1+x_2\vec a_2+x_3\vec a_3=y_1\vec b_1+y_2\vec b_2+y_3\vec b_3.$$ Поскольку векторы принадлежат $\mathbb R^5$, в координатной записи получаем однородную систему пяти уравнений с шестью неизвестными. Почему надо решать какие-то три другие системы, если написано, что надо решить одну систему? Решаете её методом Гаусса и находите базис подпространства решений.

 
 
 
 Re: Согласованная система базисов
Сообщение05.12.2013, 23:27 
Аватара пользователя
Someone в сообщении #796638 писал(а):
Поскольку векторы принадлежат $\mathbb R^5$, в координатной записи получаем однородную систему пяти уравнений с шестью неизвестными. Почему надо решать какие-то три другие системы, если написано, что надо решить одну систему? Решаете её методом Гаусса и находите базис подпространства решений.

Действительно, сглупил.

Получается имеем уравнение $\begin{pmatrix}
2 & 3 & 4 & 2 & 1 & 2\\ 
5 & 4 & 3 & 4 & -2 & 4\\ 
2 & 4 & 4 & 3 & 1 & 5\\ 
5 & 3 & 2 & 4 & -2 & 3\\ 
2 & 3 & 5 & 4 & 4 & 3
\end{pmatrix}\begin{pmatrix}
x_1\\ 
x_2\\ 
x_3\\ 
x_4\\ 
x_5\\ 
x_6
\end{pmatrix}=\begin{pmatrix}
0\\ 
0\\ 
0\\ 
0\\ 
0
\end{pmatrix}$
И ответом будет любой вектор вида $\begin{pmatrix}
x_5+x_6\\ 
x_5-2x_6\\ 
-x_5+x_6\\ 
-x_5-x_6\\ 
x_5\\ 
x_6
\end{pmatrix}$.
Из того, что любой вектор из пространства решений задаётся 2-мя числами и следует то, что оно, как и пересечение подпространств, двухмерно?

 
 
 
 Re: Согласованная система базисов
Сообщение06.12.2013, 00:13 
Аватара пользователя
Можно просто ранг этой матрицы подсчитать.

 
 
 
 Re: Согласованная система базисов
Сообщение06.12.2013, 00:58 
Аватара пользователя
DoubleBubble в сообщении #796787 писал(а):
Из того, что любой вектор из пространства решений задаётся 2-мя числами и следует то, что оно, как и пересечение подпространств, двухмерно?
Примерно так. (Заданные наборы векторов, порождающие $U$ и $V$, могут быть линейно зависимы, тогда будет не так.) Теперь подставьте в это общее решение сначала, например, $x_5=1$, $x_6=0$, потом наоборот, и получите два линейно независимых вектора. Эту пару потом надо дополнять до базисов в $U$ и $V$, а объединение этих базисов даст базис в $U+V$. Нужно ли потом дополнять полученную четвёрку векторов до базиса в $\mathbb R^5$, Вам лучше знать.

 
 
 
 Re: Согласованная система базисов
Сообщение06.12.2013, 09:48 
Аватара пользователя
provincialka в сообщении #796803 писал(а):
Можно просто ранг этой матрицы подсчитать.

Ранг даст мне только количество решений, а так я смогу получить и сами решения.

Someone в сообщении #796819 писал(а):
Заданные наборы векторов, порождающие $U$ и $V$, могут быть линейно зависимы, тогда будет не так.

А как будет? Ведь тогда пространство решений будет задаваться тремя числами.

 
 
 
 Re: Согласованная система базисов
Сообщение06.12.2013, 12:28 
Аватара пользователя
DoubleBubble в сообщении #796853 писал(а):
А как будет? Ведь тогда пространство решений будет задаваться тремя числами.
Просто надо из найденных векторов выбрать максимальную линейно независимую подсистему.

 
 
 
 Re: Согласованная система базисов
Сообщение06.12.2013, 13:17 
Аватара пользователя
DoubleBubble в сообщении #796853 писал(а):
Ведь тогда пространство решений будет задаваться тремя числами

А это как? :facepalm:

 
 
 
 Re: Согласованная система базисов
Сообщение06.12.2013, 15:23 
Аватара пользователя
Матрицу можно будет привести к виду $\begin{pmatrix}
1 & 0 & 0 & a & b & c\\ 
0 & 1 & 0 & e & f & g\\ 
0 & 0 & 1 & g & h & k\\ 
0 & 0 & 0 & 0 & 0 & 0\\ 
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$
Когда $x_1, x_2, x_3$ можно найти через $x_4, x_5, x_6$, которые можно брать произвольно.

 
 
 [ Сообщений: 30 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group