zkutch писал(а):
"Существенным дефектом первой формулировки является отсутствие требования непустоты множеств Мальфа, без чего определить функцию невозможно."
Но с пустым множеством индексов определить функцию и для пустых Мальфа оказалось возможным из вышеприведенного.
При пустом множестве индексов мы имеем ровно ноль множеств
, то есть о них истинно любое утверждение - что они пустые, что они непустые и даже что они зеленые. Так что их непустота в данном случае, как говорится, "is vacuosly true".
zkutch писал(а):
Не названа какая-нибудь процедура выбора некоторых элементов, а берутся все.
Вы жонглируете словами, пытаясь скрыть их смысл.
zkutch писал(а):
Но видите ли в аналогичных жаргонных выражениях "возьмем элемент из В", "рассмотрим элемент В" думаю не ошибусь, если скажу, что в подавляющем большинстве случаев понимаем именно слово "любой", "произвольный". "Пусть взят объект x который принадлежит В" я понимаю так как взят любой элемент. Не названа какая-нибудь процедура выбора некоторых элементов, а берутся все.
Это противоречит вашим же словам: "если есть такой элемент, то рассматриваем второй." Таки не все, а по очереди.
Цитата:
Что такое
? Где определение этой последовательности? Где доказательство того, что в эту последовательность входят _все_ индексы элементов B?
zkutch писал(а):
Вы опять не верите именно в текст Колмогорова-Фомина, несмотря на ваше-же заявления об очевидности.
Я не заявлял очевидности. Я предположил, что это очевидно _для_них_. Я реконструирую их пропущенные рассуждения в случае бесконечного B примерно так:
Пусть
- множество индексов всех элементов
, входящих в
. Так как совершенно очевидно, что подмножество множества натуральных чисел счетно, то элементы множества
можно расположить в последовательность
. Тогда
тоже счетно, поскольку его члены
занумерованы числами
Но доказательство этого "совершенно очевидно" на самом деле длиннее, чем приведенного в книге следствия из него.
Есть общепринятый способ определения последовательности
: "Мы последовательно (в порядке возрастания) просматриваем натуральные числа. Встретив очередной элемент, принадлежащий множеству B, присваиваем ему наименьший ещё не занятый номер." Для этого способа очень просто дать доказательство того, что он переберет индексы _всех_ элементов B. Но на этот способ у Колмогорова-Фомина нет даже намека.
Вы все время уходите в сторону от обсуждаемого вопроса. Вы утверждаете, что в рассуждениях Колмогорова-Фомина нет ошибок, и уже в который раз пространно объясняете какие-то маленькие кусочки их доказательства, не показывая, как они соединяются в целое. Попробуйте лучше выдать связный текст, содержащий их доказательство и заполняющий пробелы: как определяется последовательность
и как именно доказывается, что мы имеем право "приписать всеобщность" к утверждению, что элементы B занумерованы, чтобы "получилась истина". Без такого текста ваше утверждение о правильности доказательства Колмогорова-Фомина необосновано.