Эээ... В единичной матрице число обусловленности единица, независимо от порядка. В диагональной равно отношению абсолютных величин максимального и минимального элементов. Если они случайны - можно оценить его матожидание (или какую иную желаемую оценку), но надо бы знать закон распределения.
Можно рассмотреть случайные матрицы общего вида - но как-то всё нечётко поставлено.
я совсем забыл, что все по норме фробениуса брал, то есть какой вывод получается например для диагональных матриц? то, что какой то зависимости от порядка нету?
и какую норму выбирать лучше всего для такого исповедования? ведь обусловленность единичной матрицы допустим 1000 порядка в норме фробениуса будет 1000, а в двух остальных нормах = 1. Какой норме тогда верить? это хорошо или плохо обусловленная матрица ?
спасибо за ответы и советы, понял примерно ошибки, буду дальше работать.