1) Доказать, что при каждой параметризации плоскости ее вторая квадратичная форма равна нулю.
2) Доказать, что при любой параметризации сферы ее первая квадратичная форма пропорциональна второй.
1) Мы знаем уравнение плоскости
, из него
можно выразить как линейную функцию от
и
. Все вторые производные равны нулю и, пользуясь формулой
получаем, что и вторая кв. форма тоже равна нулю. Но доказательство ли это, ведь получается, что я беру конкретную параметризацию, а не общую?
2) По второй идей вообще нет.