Просто интересно, что школьник должен знать, чтобы ему можно было объяснить, что можно делать с комплексными числами, и чтобы школьник смог их освоить.
У нас в школе их не было. Потому мне неясно как.
У нас нашел только такую тему:
topic25406.html, но там - для студентов.
Сам повспоминал, пришел к выводу, что объяснить что-либо про них невозможно
Мотивировать вводом решения кубических уравнений, а заодно так дать понять, что они существуют - сложно слишком (обычно кубические уравнения неинтересны никому). Мотивировать вводом решения квадратных уравнений - как-то не особо мотивируется, наверное. Доказать их существование не получится. Для описания комплексной плоскости надо хотя бы векторы знать, да и синусы-косинусы нужны, ну еще для формулы Муавра это все нужно. Геометрические приложения не показать. Доказать, что каждый многочлен там имеет корень тоже не выйдет. Показать формулу Эйлера (и свести тригонометрию к ней) тоже сложно - экспоненту надо знать и ряды.
Ничего осмысленного не нагуглил, кроме этого:
http://eek.diary.ru/p117285614.htm?oam#more1 (там есть ссылка на книгу, там про комплексные числа в геометрии)
В общем, ничего не получается
Разве что в 11-м классе давать. Как быть?