Уважаемые участники форума, хочу узнать Ваше мнение по поднятому вопросу, который, как мне кажется, изменяет значимость решения уравнения Шредингера для квантового осциллятора.
Решение уравнения Шредингера для квантового гармонического осциллятора играет большую роль и приводится во многих учебниках по квантовой механике. Рассматриваемое решение показывает, что последовательные квантовые состояния осциллятора с номерами n=(1, 2, 3,...) характеризуются эквидистантным спектром энергий при разности энергий последовательных состояний
, где
- постоянная Планка, а
- угловая частота колебаний классического аналога квантового осциллятора. Помимо указанных квантовых состояний существует так называемое нижнее нулевое состояние осциллятора с энергией, равной половине приведенного выше значения
.
Эквидистантный спектр энергий квантового осциллятора положен в основу квантования электромагнитного (ЭМ) излучения в квантовой электродинамике, где читается, что каждое спектральное состояние волнового электромагнитного поля с частотой
в некоторой прямоугольной области является аналогом квантового осциллятора с той же частотой колебаний. Предполагается, что энергия таких состояний может принимать ряд дискретных значений. При этом рассматриваемая спектральная составляющая электромагнитного излучения содержит как бы несколько одинаковых частиц - фотонов с нулевой массой покоя, энергией
и импульсом
. Считается так же, что как и в квантовом осцилляторе, каждая спектральная составляющая ЭМ излучения характеризуется скрытой нулевой энергией, равной
, то есть - половинному значению энергии реального фотона.
Нерелятивистское уравнение Шредингера, используемое для определения энергетических уровней квантового осциллятора, не является самым точным волновым уравнением, описывающим состояния и поведение электрона и других микрочастиц. Более точными принято считать релятивистское уравнение Клейна-Гордона, правильно описывающее высокоэнергетические бесспиновые микрочастицы, и уравнение Дирака, учитывающее наряду с релятивистскими эффектами также спин электрона. Ввиду сказанного представляет интерес поиск и анализ решений уравнений Клейна-Гордона и Дирака для квантового осциллятора, т.е. решений указанных уравнений с квадратичной зависимостью потенциальной энергии от величины отклонения частицы от начального положения. Поскольку поиск решений указанных задач в интернете оказался безуспешным, автор предлагает к рассмотрению собственные изыскания в рассматриваемой области. Пожалуйста, сообщите источник, если кто-либо знаком с решением поставленной задачи.
Путем некоторых преобразований стационарное уравнение Клейна-Гордона для одномерного линейного осциллятора приводится к следующему обобщенному виду с безразмерными переменными:
Здесь приняты следующие обозначения переменных:
скорость света и постоянная Планка приняты равными 1 (
);
, где
- обычная координата, а
- комптонова длина волны микрочастицы;
- обобщенная полная энергия электрона, выражаемая в единицах энергии массы покоя;
массовый член уравнения при подобном преобразовании приобретает значение 1;
- безразмерный коэффициент крутизны стенок квадратичного потенциального ящика.
При решении данного уравнения был выполнен предварительный качественный его анализ, а для его точного решения использованы вычислительные методы. Анализ решения показывает, что первые два участка изменения волновой функции в определенной степени подобны соответствующим участкам шредингеровой волновой функции для линейного осциллятора, в то время, как ее концевые колебательные участки, отсутствующие в осцилляторе Шредингера, заслуживают отдельного рассмотрения. Эти участки отвечают весьма большому значению заграждающего энергетического потенциала, превышающего удвоенную энергию покоя частицы, и видимо, связаны с так называемым парадоксом Клейна, который заключается в легком преодолении заряженной низкоэнергетической частицей энергетического заграждающего барьера, превышающего величину удвоенной энергии частицы. Правая часть симметричной относительно оси типичной волновой функции осциллятора Клейна-Гордона для квантового числа
приведена на нижеследующем рисунке.
Энергия всех квантовых состояний осциллятора Клейна-Гордона (за вычетом энергии покоя частицы) меньше энергии соответствующих состояний осциллятора Шредингера. При этом разность энергий последовательных состояний рассматриваемого осциллятора не является постоянной величиной, а возрастает с ростом квантового числа. Степень уменьшения энергии произвольного n-состояния зависит также от величины
- коэффициента крутизны склонов квадратичной потенциальной ловушки. Например, энергия состояния осциллятора, показанного на приведенном рисунке меньше энергии подобного состояния осциллятора Шредингера на 1,9%.
Количественный анализ показывает, что энергия квантовых состояний осциллятора Клейна-Гордона меньше энергии соответствующих состояний осциллятора Шредингера на величину, зависящую от квантового числа
и крутизны потенциально-энергетической ловушки
. При этом в диапазоне изменения показателей
и
ориентировочное значение разности энергий одинаковых состояний осцилляторов Шредингера и Клейна-Гордона может быть рассчитано по формуле
В случае одномерного осциллятора Дирака с запирающим квадратичным потенциалом, направление изменения которого совпадает с направлением спина электрона (координатная ось
), система уравнений для двух отличных от нуля пространственных компонент спинорной волновой функции
и
может быть сведена в обобщенных переменных к следующему виду
Можно видеть, что первое основное уравнение осциллятора Дирака, определяющее характер изменения волновых функций и энергию последовательных квантовых состояний, отличается от соответствующего уравнения Клейна-Гордона лишь одним дополнительным членом, содержащим первую производную от компоненты волновой функции
, описывающим спиновое взаимодействие электрона с электрическим полем. Заметим также, что варианты уравнений осциллятора Дирака с обратным направлением спина или с поперечным его направлением относительно направления изменения квадратичного запирающего потенциала принципиально ничем не отличаются от рассмотренного варианта с продольным прямым направлением спина.
Переходя к анализу уравнений осциллятора Дирака, прежде всего, отметим относительно малое влияние дополнительного члена с первой производной, как на вид и величину волновой функции (изменение - единицы процента) в области умеренных значений координаты
, так и на величину энергии последовательных квантовых состояний (изменение - тысячные доли процента).
Основные выводы, следующие из приведенного выше анализа. В отличие от квантового линейного осциллятора Шредингера релятивистские осцилляторы Клейна-Гордона и Дирака не отличаются эквидистантностью уровней энергии последовательных квантовых состояний. Уровни энергии квантовых состояний релятивистских осцилляторов и их разность для последовательных квантовых состояний меньше соответствующих показателей осцилляторов Шредингера, причем снижение значений упомянутых показателей возрастает с увеличением квантового числа и крутизны склонов потенциальной ловушки. Энергия состояний осцилляторов Дирака несколько превышает энергию соответствующих состояний осцилляторов Клейна-Гордона. При этом величина указанного превышения не зависит от квантового числа и возрастает пропорционально показателю крутизны склонов потенциальной ловушки.
Более детальное рассмотрение квантовых линейных осцилляторов на основе уравнений Клейна-Гордона и Дирака приведено в статье
Решение уравнений Клейна-Гордона и Дирака для квантового осциллятора С уважением О.Львов