Вот, в том-то и штуковина, что я тоже понимаю открытость как отсутствие у множества (непрерывного, для простоты) граничных точек, тех, которые любой окрестностью-шариком задевают внешнее множество-дополнение.
Это не то же. Я пишу совсем о другом. Я говорю о том, что определить принадлежность точки множеству можно, а непринадлежность - вообще говоря, нельзя (но может быть и можно). Кроме интервалов можно привести такие примеры:
1. Топология Зарисского (над
): пространство
, открытые множества - множества, на которых некоторое множество полиномов имеет ненулевое значение (в смысле, в каждой точке хотя бы один полином ненулевой). Та же ситуация, что и с интервалами - для того, чтобы проверить, что значение ненулевое, достаточно посчитать их с некоторой точностью, а для равенства надо вычислять всю бесконечную цепочку знаков
2. Связное двоеточие - два элемента, один из которых составляет открытое множество, а другое - нет. Рассмотрим программы, которые не могут ничего печатать на экран. У таких программ может быть ровно два поведения - они либо завершаются, либо не завершаются, причем первое определить можно за конечное время, а второе нельзя.
3. Пространство Бэра - бесконечные последовательности из нулей и единиц, открытые множества - те которые начинаются с одной из заданного множества конечных строк. Опять же, указать строку, с которой начинается множество, можно, а если оно не начинается ни с одной, то надо просмотреть всю бесконечную последовательность (потому что в нашем множестве строк могут быть сколь угодно длинные).
Но, как я говорю, это вряд ли распространенное понимание топологии, оно идет из CS.
Но в самом общем, абстрактном, виде открытость - другая. Она, оказывается, определяется самим фактом принадлежности к топологии. К тому набору множеств, который подчиняется всего 3м правилам.
Она не другая, а более общая. Так получилось, что по всей математике встречаются семейства множеств, замкнутые относительно объединений и конечных пересечений (и наоборот). Вот и решили называть это дело топологией, а терминологию заимствовать из геометрии.
И возможно ли совершить хоть какой-то логический переход от общей открытости к "непрерывностной" - мне непонятно.
От общей открытости к непрерывностной - легко. Набор открытых в обычном смысле множеств на
удовлетворяет всем трем условиям, и потому действительно является топологией.
Непонятно также, что, собственно, дальше. Ну выбрали мы именно такой а не другой набор множеств. Что с ними дальше-то делать, чтобы познать всю таинственную прелесть топологии? ))
Или, может, нужно повыбирать десяток-другой топологий, чтобы понять, в чём фишка?
Вообще да, было бы неплохо. Топология встречается в математике абсолютно везде, в этом и прелесть.
В этом тоже ошибка по-вашему? Отрезки имеют в себе свои граничные точки, а значит, они не являются открытыми, а значит, по определению...
Конечно, ошибка. Вас просят проверить, является ли семейство отрезков топологией. Для этого Вы зачем-то берете другое семейство, про которое Вы знаете, что оно является топологией, и говорите, что отрезки не являются открытыми в этой топологии. Но это же не говорит о том, что отрезки не могут образовывать свою, другую топологию.