Сначала попрошу извинения за ошибку (описку) в моем утверждении, что кривая зависимости коэффициента затухания
от высоты запрещающего барьера
симметрична относительно точки
. На самом деле она симметрична относительно точки
.
Цитата:
Munin :
А это не то же самое, что парадокс Клейна, наиболее известный для уравнения Дирака?
Замечу, что в случае электронного уравнения Дирака все приведенные мною соотношения для поведения частицы в потенциальном ящике, полученные для уравнения Клейна-Гордона, остаются в силе. С парадоксом Клейна я не знаком. Спасибо за подсказку - буду искать в интернете.
Цитата:
Утундрий :
В ограниченности одночастичной интерпретации.
Если я Вас правильно понял, уравнения Клейна-Гордона (УКГ) и Дирака не пригодны для точного описания одиночной частицы?
Цитата:
ewert
Локализуется.
Насколько мне известно, из монографий по теоретической физике, например Ландау-Лифшица (том 3) и Левича (том 2), частица не локализуется в потенциальном ящике с низкими энергетическими стенками ввиду наличия относительно большой кинетической энергии и, соответственно, импульса в нижнем квантовом состоянии, что подтверждается анализом решения уравнения Шредингера для рассматриваемого случая, а также соотношением неопределенности Гейзенберга.
В рассматриваемом случае УКГ отсутствие связанного состояния частицы при относительно низком запирающем потенциале также подтверждается аналитически.
С подачи г. Munin'а быстро нашел в Википедии статью о Парадоксе Клейна, который заключается в легком прохождении электронов через потенциальный барьер произвольно большой высоты ввиду образования электронно-позитронных пар. Эта интерпретация совпадает с утверждением г. Утундрия.
Все казалось бы, доказано, но не поддается логике. Почему электроны, вместо того, чтобы сдеть внутри очень высоких запирающих стенок с легкостью перепрыгивают через них, сгенерировав вокруг себя электронно-позитронные пары? И в тоже время они локализуются сравнительно низким запирающим потенциалом (
), не образуя никаких пар.
С уважением, О.Львов