Вот, в инете нашел:
Цитата:
Особо плохими для теста Ферма являются так называемые числа Кармайкла. Они обладают следующим свойством: для любого a такого, что (a, n) = 1 верно

Первые три числа Кармайкла таковы: ..... Среди первых 100000000 чисел их всего 255. Лишь недавно (1994 г.) было доказано, что таких чисел бесконечно много.
Так что похоже, не так уж их и много (я имею в виду, на них случайно сложно напороться)... Сами числа умышленно убрал - пусть народ решает!

Я как-то написал программку для генерации простых чисел в диапазоне 1..N (алгоритм - решето Эратосфена), так их вообще море оказалось! Кстати, какое бы N я не брал, количество простых чисел получалось примерно 1/10 от N.