2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Поточечная сходимость в С[0,1] не экв. сходимости по метрике
Сообщение06.06.2007, 22:46 
Подскажите, пожалуйста, как доказать, что поточечная сходимость в пространстве непрерывных функций не эквивалентна сходимости ни по какой метрике.

 
 
 
 
Сообщение07.06.2007, 00:45 
Аватара пользователя
Marista

В пространстве непрерывных функций сходимость по метрике эквивалентна равномерной сходимости, из которой следует поточечная, но не наоборот (Колмогоров, Фомин стр. 197).

 
 
 
 
Сообщение07.06.2007, 08:44 
reader_st
Нет, так не годится. Вы всего лишь докажете, что поточечная сходимость не задаётся равномерной метрикой. Но вдруг найдётся какая-то другая метрика, при помощи которой она задаётся?

Marista
Это классическая, но не самая простая задача. Приведу вам подсказку из одного учебника (Хелемский).
1. Пусть сходимость задаётся метрикой $d$. Докажите, что для любой точки $t\in(0,1)$ и для любого $\varepsilon>0$ найдётся такое $h>0$, что $d(x(t),0)<\varepsilon$ как только $x(t)=0$ вне отрезка $[t,t+h]$. То есть, неважно, как ведёт себя функция над точкой $t$, лишь бы она была равна нулю вне маленького отрезка, и тогда функция будет близка к нулю по метрике.
2. Используя первый пункт, постройте последовательность функций, сходящихся к нулю по метрике, но не поточечно.

 
 
 
 
Сообщение07.06.2007, 22:54 
Кажется, этой подсказки мне недостаточно. Если можно, расскажите, пожалуйста, подробнее.

 
 
 
 
Сообщение08.06.2007, 02:12 
Да, этой подсказки действительно недостаточно. В том решении, которое я знаю, ещё используется теорема Бэра. Впрочем, можно и без неё, "на пальцах".

1. Докажите первое утверждение 1, сформулированное выше. Это несложно. (Там h будет зависеть от t и от $\varepsilon$, $h=h(t,\varepsilon)$).

2. Теперь нам бы хотелось видоизменить утверждение 1 следующим образом: надо как-то заменить отрезок $[t,t+h]$ на интервал, содержащий точку $t$. Если бы мы могли предъявить хотя бы одну точку $t_0$ такую, что для любого $\varepsilon>0$ существует окрестность $U(t_0,\varepsilon)$ точки $t_0$, такая что
из $x(t)=0$ вне $U(t_0,\varepsilon)$ следует $d(x,0)<\varepsilon$,
то мы бы сразу выписали последовательность функций $x_n(t)$, сходящихся к нулю по метрике, но не поточечно.
Предположив, что мы уже нашли точку $t_0$, проделайте это (предъявите искомую последовательность $x_n(t)$).

3. Дело за малым - найти $t_0$. Назовём точку $s$ "хорошей для $\varepsilon$", если для фиксированного $\varepsilon$ она обладает свойством: функции $x(t)$, обращающиеся в ноль вне некоторой окрестности точки $s$, имеют метрику $d(x(t),0)<\varepsilon$.
Точку, которая является "хорошей" для бесконечно малой последовательности эпсилонов, назовём "совсем хорошей". Искомая точка $t_0$ - как раз и есть "совсем хорошая".

Обозначим множество точек, "хороших для $\varepsilon$", через $G_\varepsilon$.
Пользуясь уже доказанным пунктом 1 из этого сообщения, для любого фиксированного $\varepsilon$ предъявите множество $G_\varepsilon$. Докажите, что это будет почти весь отрезок.

4. Последний шаг: рассмотрите пересечение $\cap_{n=1}^\infty G_{1/n}$. Докажите, что оно не пусто. Точка, лежащая в этом пересечении, и будет нужной нам "совсем хорошей".

 
 
 
 
Сообщение08.06.2007, 18:10 
Аватара пользователя
По-моему, можно и попроще, прямо по подсказке
Согласно утв. 1, найдётся функция $x_1(t)$, для которой $d(x_1(t),0)<1$, и которая удовлетворяет условию $x_1(t)\geqslant1$ на некотором отрезочке $[t_1+\frac {h_1}3;t_1+\frac{2h_1}3]$. Опять же, согласно утв. 1, найдётся функция $x_2(t)$, для которой $d(x_2(t),0)<\frac12$, и которая удовлетворяет условию $x_2(t)\geqslant1$ на некотором отрезочке $[t_2+\frac {h_2}3;t_2+\frac{2h_2}3]\subset[t_1+\frac {h_1}3;t_1+\frac{2h_1}3]$. Отсюда до полного решения осталось сделать всего один шажок.

 
 
 
 
Сообщение10.06.2007, 23:03 
Marista писал(а):
Поточечная сходимость в С[0,1] и сходимость по метрике.
Подскажите, пожалуйста, как доказать, что поточечная сходимость в пространстве непрерывных функций не эквивалентна сходимости ни по какой метрике.

1) Поточечная сходимость в С[0,1] эквивалентна равномерной сходимости, которая задается стандартной нормой пространства С[0,1]. Поэтому, вероятно, имелось в виду пространство непрерывных функций на $(0,1)$ или на на $(0,1]$.

2)
Dan_Te писал(а):
1. Пусть сходимость задаётся метрикой $d$. Докажите, что для любой точки $t\in(0,1)$ и для любого $\varepsilon>0$ найдётся такое $h>0$, что $d(x(t),0)<\varepsilon$ как только $x(t)=0$ вне отрезка $[t,t+h]$. То есть, неважно, как ведёт себя функция над точкой $t$, лишь бы она была равна нулю вне маленького отрезка, и тогда функция будет близка к нулю по метрике.

Я, наверное, чего-то не понял. Объясните пожалуйста.
Пусть $d(f,g)=\max\limits_{x\in [0,1]}|f(x)-g(x)|$ - обычная равномерная метрика на $C[0,1]$. Для этой метрики очень даже важно, как функция ведет себя над точкой. В частности, Ваше утверждение 1. неверно.
Можно дать точную цитату из Хелемского?

 
 
 
 
Сообщение11.06.2007, 05:09 
Аватара пользователя
neo66 писал(а):
Поточечная сходимость в С[0,1] эквивалентна равномерной сходимости

:shock: Вы считаете, что последовательность функций $$f_n(x)=x^n(1-x^n)$$ сходится к $f(x)=0$ равномерно на $[0;1]$? :shock:

 
 
 
 
Сообщение11.06.2007, 11:01 
Я уже осознал свою ошибку :oops:.
А что касательно моего второго вопроса?

 
 
 
 
Сообщение12.06.2007, 03:13 
Аватара пользователя
neo66 писал(а):
А что касательно моего второго вопроса?

Утверждение 1 надо читать так: пусть поточечная сходимость в $C[0;1]$ задаётся...

 
 
 
 
Сообщение12.06.2007, 18:51 
RIP писал(а):
По-моему, можно и попроще, прямо по подсказке
Согласно утв. 1, найдётся функция $x_1(t)$, для которой $d(x_1(t),0)<1$, и которая удовлетворяет условию $x_1(t)\geqslant1$ на некотором отрезочке $[t_1+\frac {h_1}3;t_1+\frac{2h_1}3]$. Опять же, согласно утв. 1, найдётся функция $x_2(t)$, для которой $d(x_2(t),0)<\frac12$, и которая удовлетворяет условию $x_2(t)\geqslant1$ на некотором отрезочке $[t_2+\frac {h_2}3;t_2+\frac{2h_2}3]\subset[t_1+\frac {h_1}3;t_1+\frac{2h_1}3]$. Отсюда до полного решения осталось сделать всего один шажок.

C пресловутым утв. 1 разобрался. :) И наброском доказательства Dan_Te тоже. Но вот сделать "всего один шажок" не получается. :cry:

Кстати, поточечная сходимость при условии ограниченности, задается слабой топологией на пространстве $C[0,1]$. Интересно, существует ли топология на $C[0,1]$, задающая поточечную сходимость, без вышеназванного условия?

 
 
 
 
Сообщение12.06.2007, 19:05 
Аватара пользователя
последовательность вложенных отрезков всегда имеет общую точку, в которой выполнятся одновременно все неравенства, наложенные на последовательность функций.

 
 
 
 
Сообщение12.06.2007, 19:12 
Мерси, теперь понятно.

 
 
 
 
Сообщение12.06.2007, 21:16 
Аватара пользователя
neo66 писал(а):
Кстати, поточечная сходимость при условии ограниченности, задается слабой топологией на пространстве $C[0,1]$.


Имеется в виду ограниченность последовательности по норме?
Слабая топология на $C([0,1])$ - это наименьшая топология, в которой непрерывны все линейные функционалы на $C([0,1])$, непрерывные по обычной норме?

Нельзя ли подробнее? Что-то я не соображу, почему так.

neo66 писал(а):
Интересно, существует ли топология на $C([0,1])$, задающая поточечную сходимость, без вышеназванного условия?


Поточечная сходимость последовательности $\{g_n:n\in\mathbb N\}\subset C([0,1])$, к некоторой функции $g\in C([0,1])$ означает, что для каждого $\varepsilon>0$ и для каждого конечного множества $A\subset[0,1]$ найдётся такой номер $n_{\varepsilon,A}\in\mathbb N$, что для всех $n>n_{\varepsilon,A}$ и $x\in A$ выполняется неравенство $|g_nx-gx|<\varepsilon$.
Поэтому искомая топология определяется окрестностями вида
$$V_{\varepsilon,A}g_0=\{g\in C([0,1]):|gx-g_0x|<\varepsilon\text{ для всех }x\in A\}$$
для всевозможных $g_0\in C([0,1])$, $\varepsilon>0$ и конечных $A\subset[0,1]$. Эта топология называется топологией поточечной сходимости.

Рассмотрим всевозможные функции $g\colon[0,1]\to\mathbb R$ без каких-либо ограничений (в частности, без требования непрерывности). Множество всех таких функций обозначается $\mathbb R^{[0,1]}$. Как множество это есть произведение континуума прямых. Множества вида
$$V_{\varepsilon,A}g_0=\{g\in\mathbb R^{[0,1]}:|gx-g_0x|<\varepsilon\text{ для всех }x\in A\}$$
(для всевозможных $g_0\in\mathbb R^{[0,1]}$, $\varepsilon>0$ и конечных $A\subset[0,1]$) определяют на $\mathbb R^{[0,1]}$ топологию тихоновского произведения. При этом $C([0,1])$ с топологией поточечной сходимости является всюду плотным подпространством пространства $\mathbb R^{[0,1]}$.

Однако далеко не каждая функция из $\mathbb R^{[0,1]}$ является поточечным пределом последовательности функций из $C([0,1])$, то есть, непрерывных (я где-то встречал теорему, характеризующую такие функции, но не помню формулировку).

 
 
 
 
Сообщение12.06.2007, 21:40 
Аватара пользователя
Someone писал(а):
Однако далеко не каждая функция из $\mathbb R^{[0,1]}$ является поточечным пределом последовательности функций из $C([0,1])$, то есть, непрерывных (я где-то встречал теорему, характеризующую такие функции, но не помню формулировку).
Функции, являющиеся поточечными пределами непрерывных функций образуют так называемый первый класс в классификации Бэра, нулевой класс Бэра состоит из непрерывных функций. Про эти классы есть пара теорем Лебега. В частности, функция f на отрезке является функцией не выше первого класса Бэра, тогда и только тогда. когда все множества вида f<a , f>a имеют топологический тип F-сигма.

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group