Так, ну непонимание может быть общее, а может быть частное. Вот пример общего:
Например разделяют на необходимость и достаточность.
если не вдаваться в логические тонкости, то для теоремы
необходимость - это доказательство соотношения
, а достаточность - это доказательство соотношения
. Не все теоремы имеют вид
(например, утверждение "Все дифференцируемые функции непрерывны" - это утверждение только в прямую сторону (необходимость), а достаточность здесь не доказывают - она неверна). Для понимания такого действительно лучше почитать что-нибудь именно по матлогике.
Иногда меня очень удивляет доказательства тривиальных утверждений,которые понятны интуитивно,а доказательства их кажутся абсурдными...
Это нормальное явление, особенно в матанализе (теорема Ролля, например). Просто интуиция частично берется из наблюдений реального мира, который сложен, а математические теории строятся от аксиом к более сложным теоремам. В любом случае, строго говоря, каждое утверждение следует попытаться доказать - это позволяет выявить пробелы, впоследствии быть может обобщить некоторые утверждения, развить точную терминологию. Интуиция и способность доказывать - 2 разнородных способа позволяющих достигать истины. В разных разделах со строгостью все обстоит по разному. В матанализе сильно строго доказывать не получается - довольно муторно и длинно.
А доказательства некоторых теорем,например несчетности континуума, содержат не очевидные (спорные)утверждения(скорее всего это я что-то не понимаю).
В плане доказательства там все просто: рассуждение от противного. Если же здесь что-то специфичное непонятно, то нужно разбираться конкретно с этим. Вам помогут разобраться
здесь.