2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 09:27 


14/01/11
3031
Коровьев в сообщении #625217 писал(а):
Именно так и пытались доказать БТФ многие известные математики.

Боюсь, не вполне улавливаю, как из отсутствия решений для попутного уравнения следует ВТФ, но вот парочка решений:
$\frac{3^3+6^3}{3+6}=3^3$, $\frac{918^4+459^4}{918+459}=153^4.$

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 13:31 
Заслуженный участник
Аватара пользователя


18/12/07
762

(Оффтоп)

Писал покороче. Думал, что ферматикам и так ясно, а математики и так в курсе. Да знаете, как трудно печатать одним пальцем левой руки, правой отгонять котёнка от клавиатуры, да ещё ногой отгонять собаку от штанины?

Эта задача также, как и БТФ, разбивается на два варианта. Первый - ни одно из взаимно простых чисел $a,b,c$ не делится на показатель, который есть нечётное простое число. Второй - только одно из чисел делится на показатель.
Оба примера этому не удовлетворяют.
Второй пример для меня неожиданность :!: В жисть бы не поверил, и даже не пытался бы такое искать. Ведь, со школы ещё запомнил, что $a^4+b^4$ не делится на $a+b$. Однако ж бывает. :oops:

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 17:55 


16/08/05
1153
Sender в сообщении #625491 писал(а):
$\frac{918^4+459^4}{918+459}=153^4.$

Коровьев в сообщении #625575 писал(а):
Второй пример для меня неожиданность :!: В жисть бы не поверил, и даже не пытался бы такое искать. Ведь, со школы ещё запомнил, что $a^4+b^4$ не делится на $a+b$.

А как можно объяснить данный факт?

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 18:09 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
dmd в сообщении #625671 писал(а):
А как можно объяснить данный факт?

Нужно сократить на общий множитель 153^3
и вся таинственная делимость превратится в банальную делимость на 9.

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 21:16 


21/11/10
546
Sender в сообщении #625491 писал(а):
$\frac{918^4+459^4}{918+459}=153^4.$

dmd в сообщении #625671 писал(а):
А как можно объяснить данный факт?

Разложить на простые делители и записать "попутное выражение"
$\frac{918^4+459^4}{918+459}=\frac{(2^4+1)\cdot17^4\cdot3^{12}}{(2+1)\cdot17\cdot3^3}$
Тут ещё число $17$ присутствует.
В "попутное выражение" или условие целостности уравнения Ферма входят взаимно простые числа.
Было бы интересно посмотреть на численный пример в котором фигурируют взаимно простые числа.

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 21:21 
Заслуженный участник


04/05/09
4586
Коровьев в сообщении #625575 писал(а):
Ведь, со школы ещё запомнил, что $a^4+b^4$ не делится на $a+b$. Однако ж бывает. :oops:
Оно не делится "вообще", но может делиться в частном случае.

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение01.10.2012, 23:52 
Заслуженный участник
Аватара пользователя


18/12/07
762
ishhan в сообщении #625808 писал(а):
Было бы интересно посмотреть на численный пример в котором фигурируют взаимно простые числа.


Дык, это и есть нерешённая проблема. Если бы существовал такой контрпример, то , возможно, и не Куммер бы создал теорию дивизоров. :D
Первый случай, что таких чисел не существует, им доказан для большого класса простых показателей - так называемых регулярных простых чисел, а это означает для них БТФ верна. Но для нерегулярных проблема открыта.
Второй случай для регулярных чисел он также доказал, но не используя уравнение
$$\[
a^{n - 1}  - a^{n - 2} b + ... - ab^{n - 2}  + b^{n - 1}  = nd^n 
\]
$$
где $d$ не делится на $n$
Следовательно и тут это проблема открыта.

(Оффтоп)

Может потому эта проблема и не поддаётся, что такие числа существуют, хотя БТФ и верна? :roll:

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 08:34 


26/08/11
2098
ishhan в сообщении #625808 писал(а):
Разложить на простые делители и записать "попутное выражение"
Или просто заметить, что $918=2\cdot 459$. Т.е Sender решал уравнение $\dfrac{17}{3}a^3=b^4$. Откуда и 17 появляется, и подходящая степень тройки. Если бы выбрал $a \text{ и } 3a$ например, появится 41.
ishhan в сообщении #625808 писал(а):
Было бы интересно посмотреть на численный пример в котором фигурируют взаимно простые числа
Не дождетесь. Не найдутся взаимно простые $(a+b)|ab$

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 09:29 


14/01/11
3031
Цитата:
Не дождетесь. Не найдутся взаимно простые $(a+b)|ab$


$\frac{19^3+1^3}{19+1}=7^3$. :-)

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 09:34 


26/08/11
2098
Sender, Я же для четных степеней говорю. С нечетными все ясно. Т.е
$(a+b)|(a^2+b^2)$ тогда (и только тогда :roll:), когда

$\\a=m(m+n)\\
b=n(m+n)$

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 09:38 


14/01/11
3031
Да, понял уже. :-( Зато этот пример удовлетворяет критериям, озвученным в сообщении http://dxdy.ru/post625575.html#p625575

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 09:58 
Заслуженный участник


20/12/10
9055
ishhan в сообщении #625808 писал(а):
Было бы интересно посмотреть на численный пример в котором фигурируют взаимно простые числа.
Если $\gcd{(a,b)}=1$ и $a^4+b^4$ делится на $a+b$, то $a=b=1$.

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 18:50 


21/11/10
546
Sender в сообщении #625980 писал(а):
$\frac{19^3+1^3}{19+1}=7^3$.


Уж не потому ли, что $7^3\equiv1\mod19$ ?
nnosipov в сообщении #625990 писал(а):
Если $\gcd{(a,b)}=1$ и $a^4+b^4$ делится на $a+b$, то $a=b=1$.

Просто, как грабли, но тем не менее верно:)


worm2 в сообщении #586594 писал(а):
Venje, чтобы "изучить доказательство", нужно будет посвятить этому полжизни (без преувеличения), и то не факт, что получится. Во всём мире доказательство серьёзно изучили порядка нескольких десятков человек, и я не уверен, что этом списке есть хотя бы один русскоговорящий (хотя в том, что таковых нет, тоже не уверен). Стоит ли теперь говорить, что поиск доказательства — не самый сложный этап на этом пути?


Согласен с Вами, и хочу добавить по поводу того, что виртуозное владение техникой и желание определённого результата иногда приводит к ложному доказательству ВТФ.
И тому есть множество примеров в виде опубликованных ссылок( от кого не припомню, но точно кто-то "не наш" не русскоязычный) на ложные публикации доказательства ВТФ.
Справедливость доказательства Уайлза признана, но хотелось бы чего-то по проще и по короче.
А главное, что бы доказательство обладало нетривиальным геометрическим смыслом.
Именно то, что Пьер Ферма назвал "чудесной идеей"

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 19:31 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
shwedka в сообщении #622973 писал(а):
worm2 в сообщении #586594 писал(а):
Venje, чтобы "изучить доказательство", нужно будет посвятить этому полжизни (без преувеличения), и то не факт, что получится. Во всём мире доказательство серьёзно изучили порядка нескольких десятков человек, и я не уверен, что этом списке есть хотя бы один русскоговорящий (хотя в том, что таковых нет, тоже не уверен). Стоит ли теперь говорить, что поиск доказательства — не самый сложный этап на этом пути?

Ничего особенного в этом доказательстве нет. Во многих университетах, в том числе, в моем, доказательство излагается в курсах для аспирантов, конечно, для подготовленных. Более того, имеется немало специалистов, до такой степени владеющих техникой, что они доказали и более общие утверждения.

 Профиль  
                  
 
 Re: Доказана ли теорема Ферма?
Сообщение02.10.2012, 21:15 


21/11/10
546
Someone в сообщении #626155 писал(а):
shwedka в сообщении #622973 писал(а):
worm2 в сообщении #586594 писал(а):
Venje, чтобы "изучить доказательство", нужно будет посвятить этому полжизни (без преувеличения), и то не факт, что получится. Во всём мире доказательство серьёзно изучили порядка нескольких десятков человек, и я не уверен, что этом списке есть хотя бы один русскоговорящий (хотя в том, что таковых нет, тоже не уверен). Стоит ли теперь говорить, что поиск доказательства — не самый сложный этап на этом пути?

Ничего особенного в этом доказательстве нет. Во многих университетах, в том числе, в моем, доказательство излагается в курсах для аспирантов, конечно, для подготовленных. Более того, имеется немало специалистов, до такой степени владеющих техникой, что они доказали и более общие утверждения.


Ну и что Вы этой цитатой from уважаемой shwedka хотели обозначить?
Исчерпывающе шутливый ответ по этому поводу уже был от worm2.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 89 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group