Начать надо с того, что вообще означает слово "распадается". На языке физики это означает следующее: "летела одна частица, а потом стало несколько". (Или даже не "летела", а "была", с пространственно-временной точки зрения это одно и то же.) Это понятие очень легко наблюдать в экспериментах детекторами, например, в фотоэмульсии, или в пузырьковой камере: сначала идёт один след, а потом несколько расходящихся линий. Но мы в обычной жизни привыкли, что "распадается" означает, что что-то целое делится на куски, и эти куски потом и существуют отдельно в виде обломков.
В физике это не так! Сначала со внутренностями частиц просто не могли разобраться (они слишком мелкие), а потом выяснилось, что с делением на куски этот процесс не имеет ничего общего. Но название уже закрепилось. На самом деле, речь идёт о
процессах взаимного превращения частиц. В частном случае, когда одна частица превращается во многие. Бывают и другие частные случаи, несколько в несколько, и несколько в одну, и они тоже изучаются квантовой физикой, но просто не называются "распадами".
Убедиться, что это не "разделение на куски", можно, например, так. Бывает, что нейтрон распадается с образованием протона, а бывает (в других внешних условиях), что протон распадается с образованием нейтрона. Если бы это были "куски", то понятно, что они образовали бы бесконечную рекурсию вложенности :-)
Теперь, картина выглядит так. Есть множество разных частиц, точнее, типов частиц. Они умеют превращаться друг в друга - то есть, между ними нарисованы какие-то стрелочки. При этом, масса частицы играет роль уровня энергии (
), на котором находится частица. С верхних на нижние уровни переходы случаются самопроизвольно, как и для обычного камня, скатывающегося с горы в низину. Разумеется, если между этими уровнями есть стрелочка, а если нет - "камень" остаётся сверху. Если стрелочек много, то "камень" скатывается по любому пути до самого нижнего уровня, до которого может, так что с него уже не ведёт следующих стрелочек вниз. И наоборот, чтобы загнать "камень" наверх, нужно приложить энергию - чем и занимаются ускорители.
Физика элементарных частиц изучает, что это за частицы (уровни), и какие между ними есть превращения (стрелочки). Оказывается, что существует очень большая плотная сеть стрелочек, которая почти описывается словом "каждая в каждую", но с некоторыми исключениями. Исключения выглядят так: у частиц бывают некоторые свойства, и частицы превращаются с сохранением этих свойств, и не могут нарушить этого сохранения. Например, у частиц есть электрический заряд, так что частица с зарядом +1 не может распасться так, чтобы у итоговых частиц у всех был заряд 0. Нет, они должны в сумме образовывать снова +1, например, 0, 0 и +1, или в другом варианте, +1, +1 и -1. Электрический заряд - самое наглядное из этих свойств, его можно отдельно померять, например, по закону Кулона. Но есть и другие свойства, которые далеко не столь наглядны, и часто единственным их проявлением является то, что они запрещают какие-то распады и превращения. Но от этого они не становятся менее реальными: это наглядно видные "пустые места" в сети стрелочек. Эти свойства называются "квантовые числа" элементарных частиц, и они перечислены в таблицах.
Так вот, в системе элементарных частиц протон - самая лёгкая частица (самый нижний уровень энергии), обладающая сохраняющимся свойством "барионное число", или "барионный заряд", с величиной 1. Есть частицы легче протона, но все они имеют барионное число 0. Так что если взять более тяжёлую частицу с ненулевым барионным числом, то распадаясь, она всегда дойдёт до протона, но не дальше. А вот других чисел, которые мешали бы тяжёлым частицам распадаться так, чтобы образовался протон, нет. По крайней мере, в той части системы элементарных частиц, которая известна на сегодня (есть предположения, что неоткрытые ещё частицы тёмной материи - это тоже какие-то "нижние уровни" какой-то другой сети стрелочек, не имеющие пути в нашу известную сеть, заканчивающуюся протоном).
На самом деле, просто картиной стрелочек всё не исчерпывается. У этих стрелочек есть свойства, например, с какой скоростью одна частица может распасться по этой стрелочке в другую частицу. Обычно это зависит от разности энергий: чем больше выигрыш энергии, тем быстрее происходит такой распад. Поэтому нейтрон, который выше протона на 1,3 МэВ, распадается за 15 минут, а "изобара", которая сегодня всё-таки называется
-изобара или
-частица, выше протона на целых 300 МэВ, и распадается за
секунды. Кроме того, это зависит от того, какое взаимодействие ответственно за стрелочку, например,
может распасться в протон за счёт сильного взаимодействия (быстрого), а нейтрон - только за счёт слабого (сравнительно более медленного). По сильному взаимодействию, нейтрону распадаться в протон запрещено (по крайней мере, в свободном виде, а не в ядре), и такой запрет, хоть и не отменяет стрелочку совсем, может сильно отразиться на её свойствах, иногда даже сделать её почти "невидимой" для экспериментов.
И вот мы пришли к ещё одной оговорке: на самом деле, стрелочки действуют по-разному, в зависимости от окружающих условий. Свойства протонов и нейтронов в ядре, и их взаимных превращений, отличаются от их свойств в одиночестве. Например, в виде отдельной частицы нейтрон самопроизвольно распадается на протон, но никогда не в обратную сторону. А в ядрах иногда бывает и обратный процесс. Обычно эти условия бывают не слишком разнообразны: вакуум, внутренность ядра, присутствие мюона, внутренность нейтронной звезды - вот и всё, примерно. Но теоретически такие условия можно представить себе самые разные, и поэтому теория готовится их учитывать, на всякий случай, и поэтому оговорки произносятся самые общие.