Геометрический? Трудно сказать, этот интеграл и так определен в чисто геометрических терминах.
Он выражает суммарное влияние первого тела на второе в виде суммы влияний малых участков поверхности первого тела на малые участки поверхности второго тела. А для элементарных участков это влияние зависит от площади, расстояния и взаимной ориентации.
В интеграле явственно просматривается

— это просто телесный угол, под которым из некоторой точки первого тела видно второе тело. Аналогично можно трактовать

— телесный угол, под которым из некоторой точки второго тела видно первое тело. Хотя, строго говоря, выделять такие интегралы из полного интеграла нельзя, некий ключ к пониманию они дают. Косинусы, входящие в интеграл, выражают тот факт, что для теплообмена важна не площадь некоторого участка поверхности, а площадь его проекции на плоскость, перпендикулярную лучу зрения. Представьте, что в нескольких метрах от Вас находится раскаленный диск диаметром 1 метр, повернутый к Вам. Даже в отсутствие конвекции Вы чувствуете тепло, исходящее от него — это инфракрасное излучение. Но стоит повернуть диск ребром, как теплообмен за счет излучения резко уменьшится — важна проекция площади, а она стала почти нулевой.
Величина

имеет размерность площади. Она имеет следующий физический смысл. Первое тело светит в пространство, и лишь некоторая часть излучения попадает на второе тело. Если бы можно было обеспечить от некоторой площади поверхности первого тела стопроцентную передачу энергии излучения второму телу (например, приложив второе тело вплотную к первому), то какую площадь соприкосновения надо взять, чтобы теплообмен был тем же? С какой площади первого тела надо всю энергию отдавать второму телу, чтобы чтобы теплообмен был тем же? Площадь

и есть такая эквивалентная площадь.
На абстрактном уровне этот интеграл можно трактовать как скалярное произведение двух участков поверхности (понимаемое в не совсем обычном смысле), но Вы явно спрашивали не об этом.
В случае сложных поверхностей находить интеграл надо только численно. Но для достаточно удаленных тел справедливы простые приближенные формулы. Когда расстояние

между телами велико по сравнению с размерами тел, интеграл примерно равен

. В числителе — площади проекций поверхности тел на плоскость, перпендикулярную линии между телами.
-- Ср июл 11, 2012 14:02:19 --P.S. Аналогичные формулы для коэффициента влияния одного тела на другое встречаются в физике — см. например, формулу для коэффициента взаимной индукции двух контуров с током — очень похожую и, по сути, чисто геометрическую:
