Руст писал(а):
Способ проверки имеется и он логиеский прост. Однако, формулы пугающе сложные, чтобы без ошибки их проверять.
Проверил. Действительно совпадают. Первое уравнение умноженное на (3n+8) есть линейная комбинация второго, записанного для a(n+4) и для a(n+3).
Что меня поразило в данном случае - тот факт, что полиномы в первой формуле второй степени. Если попробовать получить из какой-то произвольной формулы для
формулу для
то в результате максимальная степень полиномиальных коэффициентов скорее всего не уменьшится (а то и увеличится). А для этой последовательности она таки уменьшается.
RIP писал(а):
maxal, Вы умеете доказывать целочисленность?
С этой стороны я не решал задачу. Есть несколько идей, но нет времени их пробовать
Руст писал(а):
Ваша формула очень похожа формуле maxalа. По видимому, ответом к задаче maxala так же является некоторая комбинаторная сумма, только с тремя биномиальными коэффициентами, содержащими n.
Рустем как всегда проницателен.
Я так понял, что без явной формулы дело заглохло. Что ж, вдохну свежую струю
Вот явная формула:
Осталось доказать, что она удовлетворяет рекуррентной формуле...