«Современные абстракции», как Вы их называете, гораздо проще понять, чем эпсилоны и дельты с тремя переменами кванторов в определении непрерывности. Эти эпсилоны и дельты исторически возникли не от хорошей жизни, а от того, что проще определений в начале девятнадцатого века не смогли придумать.
Определение предела через эпсилон - дельта включает в себя конструктивный метод.
И если человек когда-нибудь доберется до реальных вычислений,
то эти эпсилон и дельты и разные оценки ему реально пригодятся.
К тому же, всё в конце-концов сводится к числам (десятичным дробям)
и никаких других сущностей кроме эпсилон и дельта не бывает.
Остальные пределы (в пространстве функций и т.п.) это только надстройки над основной,
естественной конструкцией, введенной Коши.
Конечно значки для кванторов не добавляют понимания.
Их поэтому не очень хорошо употреблять в первых главах учебников и лекций для не математиков.
Если знаете определение предела проще чем через эпсилон и дельта, напишите.
Будет любопытно посмотреть.