Parkhomuk в сообщении #547605 писал(а):
что траектория снаряда А пересечет т.В. Что соответствует решению задачи Vb_min = 0.
Увы, нет, не соответствует. В нулевой момент времени снаряд в точке B отпускается в свободное падение, и поэтому оставаться конечный промежуток времени в этой точке с нулевой скоростью не может...
Да, Вы правы.., однако если предположить, что на тело т.В не действует сила тяжести, то мои рассуждения верны.
В случае условий этой задачи основной смысл мое поста:
Лажа все. Задача действительно не плоская. Имеем сферическую систему отсчета, начало которой совмещено с т.А, вектор АВ в которой имеет нулевую широту, тогда данный по условию задачи угол есть широта вектора скорости Vа в начальный момент. Следовательно можно подобрать такой полярный угол для этого вектора (в начальный момент времени, при условии что широта меньше 90) и его величину (нач.скорость), что траектория снаряда А пересечет т.В. Что соответствует решению задачи Vb_min = 0. Однако, для Va соответствующиму этой величине при другой величине полярного угла не будет решений для траекторий пересекающих т.B, следовательно Vb_min не равно нулю. Т.е. решение задачи неоднозначно при данных условиях. Именно потому задача не плоская и в условиях не хватает данных. Данных достаточно для плоской задачи, но отом что она плоская в ней не сказано.
с учетом Вашего замечания можно переписать так:
Пусть Vв начальная равна нулю. Пусть столкновение снарядов происходит через время t. Тогда через время t снаряды находятся в точке В’, причем множество В’(t) есть прямая. Следовательно, для единственного возможного начального значения Vа (при заданном альфа) существует единственное значение полярного угла (т.к. т.А и множество В’(t) образуют плоскость), т.е. при прочих его значениях, очевидно, нет решений для всех t, таких, что множество А’(t) пересекает множество В’(t). А из условия задачи предполагается что полярный угол может принимать любые значения.
P.S. Не понимаю почему тут до сих пор решают плоскую задачу