:?: Конечно же чисто математически можно придумать такую функцию сигнала, к которой будет неприменимо само понятие спектра. Только это явно не то, что подразумевалось в постановке физической (или технической) задачи.
Это тут совершенно не при чём. Вообще при рассмотрении теоремы Котельникова приходится иметь дело именно с физически нереализуемыми сигналами. Повторюсь: в теореме Котельникова рассматриваются сигналы с ограниченным спектром. Такие сигналы имеют неограниченную длительность и потому являются физически нереализуемыми, ибо всякий физически реализуемый сигнал имеет начало и завершение. Более того, теорема Котельникова охватывает и случаи дискретизации периодических сигналов с ограниченным спектром (т.н. многотональные или многочастотные сигналы вида
), которые тоже являются физически нереализуемыми, не только потому, что неограничены во времени, но и имеют бесконечную энергию. Ко всем перечисленным сигналам применимо понятие спектральной плотности чуть более, чем к сигналу в виде решётки Дирака, который мало того что неограничен во времени, имеет неограниченную энергию, так ещё и неопределён в некоторых точках. Так что, если и начинать "геноцид" сигналов, то первой жертвой справедливо должна оказаться столь любимая Вами решётка Дирака.
Поэтому все высказывания о какой-либо практической целесообразности при рассмотрении теоремы Котельникова, мягко говоря, неуместны: сама теорема формулируется и доказывается для физически нереализуемых сигналов, то есть должна рассматриваться на чисто математическом уровне и доказываться математически-корректно. А вот полученные результаты уже можно подгонять под нужды практики, размышляя о возможности восстановления сигнала с неограниченным спектром с той или иной степенью точности.
Вот, скажем, я вступил в Ваше тайное общество аксиоматиков. И хочу найти спектральную плотность произведения двух периодических сигналов:
. Спектр каждого из сигналов известен
и
. Поскольку мы приняли за аксиому, что произведению двух сигналов соответствует свёртка их спектров, я смело пишу:
Не буду дальше загромождать. Скажите, как мне быть с интегралом вида
? Я такое нигде не встречал...