2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Уравнение
Сообщение12.02.2007, 13:36 


03/02/07
254
Киев
Найти минимальное $q\in N$,для которого существует такое $\pi\in Z$,что 4 корня уравнения $x^4+\pi x^2+q=0$ образуют арифметическую прогресию.

 Профиль  
                  
 
 
Сообщение12.02.2007, 13:53 
Модератор
Аватара пользователя


11/01/06
5710
Тривиально - нужно взять 4 члена ариф. прогрессии, составить уравнение (относительно $x$), корнями которого они являются и приравнять коэффициент при $x^3$ нулю.
Сразу станет понятно, что $q=9$ - является минимальным, а искомое уравнение $x^4 - 10 x^2 + 9 = 0,$ и его корнями являются $-3, -1, 1, 3.$

 Профиль  
                  
 
 
Сообщение12.02.2007, 14:03 


03/02/07
254
Киев
какое уравнение? :oops: :oops: :oops: :oops: :roll:

 Профиль  
                  
 
 
Сообщение12.02.2007, 15:31 
Заслуженный участник


19/06/05
486
МГУ
Если необходимо составить уравнение относительно $x$, корнями которого являются числа $a_0,a_1,a_2,a_3$, то обычно пишут такое уравнение:

$$(x-a_0)(x-a_1)(x-a_2)(x-a_3)=0$$.

 Профиль  
                  
 
 
Сообщение12.02.2007, 15:51 


03/02/07
254
Киев
это я знаю, оно ничего не дает

 Профиль  
                  
 
 
Сообщение12.02.2007, 15:58 
Модератор
Аватара пользователя


11/01/06
5710
Все оно дает, если положить $a_i = b + i\cdot d$ (то есть сделать их членами ариф. прогрессии).

 Профиль  
                  
 
 
Сообщение12.02.2007, 16:09 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Так много скобочек раскрывать. Можно проще: многочлен чётный, значит, корни симметричные слева и справа от нуля, а если они ещё и арифм. прогрессия, то только такая: -3a, -a, a, 3a, а значит...

 Профиль  
                  
 
 
Сообщение12.02.2007, 18:38 


03/02/07
254
Киев
можно сразу записать: $2a+3d=0$, подставить а и d.После преобразований получим $3|\pi|=10\sqrt{q}$, дальше нефиг делать :lol:

Добавлено спустя 1 час 56 минут 27 секунд:

ИСН
как Вы получили что корни отличаются в три раза?

 Профиль  
                  
 
 
Сообщение12.02.2007, 19:02 
Заслуженный участник
Аватара пользователя


11/01/06
3828
Trius писал(а):
ИСН
как Вы получили что корни отличаются в три раза?

Они должны образовывать арифметическую прогрессию

 Профиль  
                  
 
 
Сообщение12.02.2007, 19:07 


03/02/07
254
Киев
да, точно, я просто неправильно написал порядок членов арифметической прогресии :( :(

 Профиль  
                  
 
 
Сообщение12.02.2007, 22:32 


04/02/07
27
Киев
trius, что ты подставляешь вместо а и d ? или ктото другой?

 Профиль  
                  
 
 
Сообщение13.02.2007, 10:13 


03/02/07
254
Киев
$a=\sqrt{\frac{-p+\sqrt{p^2-4q}}{2}}$
$d=\sqrt{\frac{-p-\sqrt{p^2-4q}}{2}}-\sqrt{\frac{-p+\sqrt{p^2-4q}}{2}}$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Shadow


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group