2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение18.01.2012, 19:16 
:oops:

AndrewN в сообщении #528418 писал(а):
Из истинности (1) не следует истинность (2).
Все в этой теме понимали под (1) не всю формулу целиком, а часть $A \wedge (A \to B)$. Это резонно. А вот следование (2) из вашего (1) никак не эквивалентно общезначимости всей формулы.

AndrewN в сообщении #528418 писал(а):
Нарисуйте две таблицы <...>
Вот:

\begin{array}{|l|ccccr|} \hline 
A & 0 & 0 & 1 & 1 & \\\hline 
B & 0 & 1 & 0 & 1 & \\\hline 
A \to B & 1 & 1 & 0 & 1 & \\ 
A \wedge (A \to B) & 0 & 0 & 0 & {\color{blue}1} & \quad(1) \\\hline 
B \to A & 1 & 0 & 1 & {\color{blue}1} & \quad(2) \\\hline 
\end{array}

Ясно видно, что $B \to A$ следует из $A \wedge (A \to B)$.

-- Ср янв 18, 2012 22:22:26 --

Из всей же $A \wedge (A \to B) \to (B \to A)$ целиком (2), конечно, не следует, т. к. первая тавтология, а у (2) есть в таблице ноль. Но такого следования, повторюсь, никто и не утверждал!

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение19.01.2012, 01:05 
arseniiv в сообщении #528455 писал(а):
Вот

Спасибо за таблицы, хотя, честно говоря, я тоже пошутил... Неважно. Вот такие таблицы и надо было начертить самому о.р., из них всё понятно и никаких парадоксов нет. Но дальше о.р. привёл нудачный (т.е. необъяснимый препозиционной логикой) пример. Давайте его перепишем в более "милых сердцу" терминах:

"Если функция дифференцируема, она непрерывна. Функция дифференцируема. Следовательно: если функция непрерывна, то она дифференцируема."

Тоже самое и в изначальном примере. Он необъясним в формализме препозиционной логики, потому что рассматриваются не простые высказывания.

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение19.01.2012, 01:27 
Консенсус. Но у него-то всё-таки можно было воспринять высказывания как относящиеся к конкретной одной болезни. Мне кажется, ваш пример с функцией утрирован.

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение19.01.2012, 03:36 

(Оффтоп)

arseniiv в сообщении #528673 писал(а):
Но у него-то всё-таки можно было воспринять высказывания как относящиеся к конкретной одной болезни.
Каюсь, я третье логическое значение применил - "а вдруг нет?" и попал в беду интерпретации... :)

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение19.01.2012, 20:53 
 !  Содержимое удалено
/Toucan

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 00:19 

(Оффтоп)

Voltron писал(а):
ты ,экспонат,так и не смог
во многия знания многия печали, и умножая знания умножаешь скорбь... - Обидел... Прости. Но цитату про "антикварный хлам" всё-таки помещу в раздел "цитаты", про меня ещё не слагали анекдоты... :) Кстати, а что такое Prolog?

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 00:47 
Аватара пользователя
 !  Voltron,

бан за хамство и ненормативную лексику

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 01:36 
Аватара пользователя
AndrewN
Вики
Prolog -(он же) Пролог (фр. Programmation en Logique) — язык и система логического программирования, основанные на языке предикатов математической логики дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.
А за анекдоты - повезло вам:)

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 02:01 

(Оффтоп)

[quote="loldop"][/quote]должно быть страшный был человечище этот Хорн, мало ему регулярной расчленёнки, так он ещё и свою замыслил...
> "А за анекдоты..." и да и нет, анекдоты удалили, лирику я не сохранил - а сколько хохмы было!, парня забанили (жалко, обидел, если можно - тейкбанавей!), и где же радость?

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 09:55 
По-моему там проблема с переводом с русского языка в формулы. Человек болен это "$A(x)$". Если человек болен то у него повышенна температура, обычно понимается как "$\forall x{(A(x)\to B(x))}$", где "B(x)"- у человека повышенна температура.
А "$(\forall x {(B(x)\to A(x))} \bigwedge B(x))\to (\forall x{(A(x)\to B(x))})$" - неверно

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 09:59 
Аватара пользователя
Только там, по-моему, в условии конъюнкция не с $B$, а с $A$. И тогда уж все конъюнктивные члены попадают в область действия квантора.

-- Пт янв 20, 2012 13:04:30 --

$A(x)$ - человек $x$ болен.
$B(x)$ - у человека $x$ повышена температура.

$$\forall x (A(x) \mathbin{\&} (A(x) \to B(x)) \to \forall x (B(x) \to A(x))$$

Это тождественно истинная формула :-)

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 10:06 
$A(x)$ в первой части не под квантором. Фраза "человек болен" не значит что больны все.

(Оффтоп)

Вечно я косячу :-(

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 10:09 
Аватара пользователя
Null в сообщении #529161 писал(а):
$A(x)$ в первой части не под квантором. Фраза человек болен не значит что больны все.

Тогда в формуле появляются свободные переменные и говорить об её истинности или ложности как-то затруднительно...

-- Пт янв 20, 2012 13:10:51 --

И вообще, мы ушли куда-то в сторону. Задача явно на исчисление высказываний, а не на исчисление предикатов. Никаких кванторов изначально не предполагалось!

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 10:10 
Внешний $x$ - константа.

$$(A(z)\mathbin{\&}\forall x (A(x) \to B(x)) )\to \forall x (B(x) \to A(x))$$

вот так будет

 
 
 
 Re: "Парадоксальное" логическое умозаключение
Сообщение20.01.2012, 10:13 
Аватара пользователя

(Оффтоп)

Подруга пришла и говорит: отрывайся от компутера, иди в магазин. Блин, такую дискуссию испортила :-)

 
 
 [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group