Да не нужно уравнений. Нужно лишь уточнить терминологию: считается ли третий случай частным случаем второго или нет. Естественнее полагать, что считается, из этого и будем исходить.
Тогда параллельность прямой к плоскости -- это альтернатива тому, что они пересекаются; и поскольку критерием параллельности является, очевидно,

-- критерием пересечения будет, соответственно,

. Если же прямая параллельна плоскости, то лежит она в плоскости тогда и только тогда, когда там лежит хотя бы одна точка прямой, неважно какая, ну вот хотя бы и

. Т.е. тогда и только тогда, когда

.