Здравствуйте, имеется следующая система нелинейных дифференциальных уравнений в частных производных:


Имеется по 8 граничных условий для каждой функций

и

:





при


при


при


при


при


при


при


при


при


при


при


при

Здесь

- константы, задаю в самом начале документа
Подскажите правильно ли я использую команды для решения этой системы в Maple:
Код:
>sys:=diff(w(x,y),x,x,x,x)+2*diff(w(x,y),x,x,y,y)+diff(w(x,y),y,y,y,y)-(t/D1)*(diff(f(x,y),y,y)*diff(w(x,y),x,x)-2*diff(f(x,y),x,y)*diff(w(x,y),x,y)+diff(f(x,y),x,x)*diff(w(x,y),y,y))=(p/D1), diff(f(x,y),x,x,x,x)+2*diff(f(x,y),x,x,y,y)+diff(f(x,y),y,y,y,y)=E*(diff(w(x,y),x,y)^2-diff(w(x,y),x,x)*diff(w(x,y),y,y))
>pdsolve({sys, w(0,y)=0, w(a,y)=0, w(x,0)=0, w(x,b)=0}, w(x,y), fcns, series)
И каким образом включить в код остальные 12 граничных условий? В тех примерах, что я просмотрела, ничего похожего не нашла.
ЗЫ в Maple я чайник, до этого пользовалась MathCAD