2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 22, 23, 24, 25, 26, 27, 28 ... 52  След.
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 01:54 


29/08/09
691
Только Вы не правильно написали f(0)=f(h) К сожалению, значение функции в точке перегиба не равно нулю , то есть $k$ не равно$h$.

Точки $a_2$ и $b_2$ меня на данный момент не интересуют, потому что через них не докажешь рациональность корней уравнений.
Я сдвинулась с мертвой точки, когда было доказано, что $a$ (которое целое число) ,больше большей критической точки. Поэтому сейчас и разбираются $b$ (которое целое) и $a_1$.

-- Пт сен 30, 2011 02:57:37 --

venco в сообщении #487899 писал(а):
Всё верно, но точка перегиба $h$ меньше $b$.

Это не так, потому что по принятым условиям $b<a$
Точка перегиба $k$.
Еще известно (это доказано), что значение функции в точках $a$, $a_1$, $a_2$ - отрицательно. В точках $b$, $b_1$, $b_2$ - положительно.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 02:20 
Заслуженный участник


04/05/09
4596
Ок. Я опять перепутал $h$ и $k$ (совершенно неочевидные названия).
После исправления:
$f(b_1)=f(b), b_1 < b$
$f(a_1)=f(a), 0 < a_1 < a$
(есть ещё $b_2 > c$ и $a_2 < 0$, но мы их не рассматриваем).
$f(0)=f(h)=f(c)=0, 0 < k < c$
Если $m_1$ и $m_2$ - критические точки, а $k$ - точка перегиба, то:
$a_2 < 0 < b_1 < m_1 < k < b < h < a_1 < m_2 < a < c < b_2$

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 02:28 


29/08/09
691
Все так, кроме того, что $k>b$ (поскольку $f(b_2)=f(b_1)=f(b)=-f(a_1)=-f(a)=-f(a_2)$), и не известно, какое из чисел $h$ или $k$ больше другого (в зависимости от этого значение функции в точке $k$либо положительно, либо отрицательно).



venco в сообщении #487899 писал(а):
Всё верно, но точка перегиба $k$ меньше $b$.
Она не может быть меньше $b$, потому что график функции симметричен относительно нее.



venco в сообщении #487872 писал(а):
Или вы опять перепутали буквы, или глазомер вас подвёл.

Я могу перепутать буквы, но глазомер - это вряд ли. Хоть в чем-то я могу быть профессионалом? :mrgreen:

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 03:23 
Заслуженный участник


04/05/09
4596
natalya_1 в сообщении #487905 писал(а):
venco в сообщении #487899 писал(а):
Всё верно, но точка перегиба $k$ меньше $b$.
Она не может быть меньше $b$, потому что график функции симметричен относительно нее.
Симметричность функции относительно $k$ никак не ограничивает положение $k$ относительно $b$.
У вас ведь есть формулы для всех точек. Подставьте в них $a=64$, $b=94$, $c=\sqrt[3]{a^3+b^3}\approx 103$.
Про рациональность точек из этого примера, естественно, ничего нельзя сказать, но вот относительное расположение точек и конкретный вид графика $f(x)$, а не абстрактного кубического полинома, можно увидеть.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 03:31 


29/08/09
691
Я сейчас посчитаю по формулам без подстановки , но это не принципиально, потому что я пляшу от разницы $h-k$ Соотношения все равно выполняться должны, просто это графически не так наглядно. Важно только для построения графика
Подставила в формулы. Да, Вы правы. Получается $k<b$ при любых значениях.

-- Пт сен 30, 2011 04:58:54 --

Ой, тут такая странная вещь получается:
$h-k=\frac{3cp-c^2d}{3(cd-p)}=-c+\frac{2c^2d}{3(cd-p)}=-c+2k$
$c+h=3k$
У меня мозги в ночи расплавились, и это не может быть не ошибкой, но получается в результате, что $k=h$, чего быть не может в принципе, если $k<b$. Ну и это противорчие, разумеется все то же.

Вообще-то может... если $c-a<1$ и тогда $k>b$

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:27 
Заслуженный участник


04/05/09
4596
natalya_1 в сообщении #487910 писал(а):
Ой, тут такая странная вещь получается:
$h-k=\frac{3cp-c^2d}{3(cd-p)}=-c+\frac{2c^2d}{3(cd-p)}=-c+2k$
$c+h=3k$
Вроде правильно.

natalya_1 в сообщении #487910 писал(а):
но получается в результате, что $k=h$
А это откуда?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:34 


29/08/09
691
но получается в результате, что $k=h$

Я в шоке.
Так как $k$- центр симметрии графика, то $\frac{c+(2k-c)-(h-k)}{2}=k$

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:44 
Заслуженный участник


04/05/09
4596
natalya_1 в сообщении #487913 писал(а):
но получается в результате, что $k=h$

Я в шоке.
Так как $k$- центр симметрии графика, то $\frac{c+(2k-c)-(h-k)}{2}=k$
Успокойтесь, и подумайте, не ошиблись-ли где-нибудь.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:46 


29/08/09
691
venco в сообщении #487914 писал(а):
Остыньте, и подумайте, не ошиблись-ли где-нибудь.

У меня картинка пред глазами ручкой на бумажке без линейки. :mrgreen:
Конечно я понимаю, что этого не может быть. Слишком хорошо, чтобы было правильным.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:48 
Заслуженный участник


04/05/09
4596
natalya_1 в сообщении #487915 писал(а):
У меня картинка пред глазами ручкой на бумажке без линейки. :mrgreen:
Конечно я понимаю, что этого не может быть. Слишком хорошо, чтобы было правильным.
Почему "хорошо"? Я бы наоборот сказал. ;-)

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:49 


29/08/09
691
venco в сообщении #487916 писал(а):
natalya_1 в сообщении #487915 писал(а):
У меня картинка пред глазами ручкой на бумажке без линейки. :mrgreen:
Конечно я понимаю, что этого не может быть. Слишком хорошо, чтобы было правильным.
Почему "хорошо"? Я бы наоборот сказал. ;-)

Ошибка?

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 04:55 
Заслуженный участник


04/05/09
4596
natalya_1 в сообщении #487917 писал(а):
venco в сообщении #487916 писал(а):
natalya_1 в сообщении #487915 писал(а):
У меня картинка пред глазами ручкой на бумажке без линейки. :mrgreen:
Конечно я понимаю, что этого не может быть. Слишком хорошо, чтобы было правильным.
Почему "хорошо"? Я бы наоборот сказал. ;-)

Ошибка?
Очевидно, если у вас получилось $h=k$ или $\frac c 2 = k$, то ошибка.
Но я пока вообще не понял смысл вот этого выражения:
natalya_1 в сообщении #487913 писал(а):
$\frac{c+(2k-c)-(h-k)}{2}=k$

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 05:06 


29/08/09
691
Это не очевидно. То есть, этого не может быть при иррациональных значениях.
И при рациональных не может. Точнее, не может быть рациональных значений, потому что не может быть $\frac{c^2d}{p}$ целым числом. Собственно, это все то же противоречие, вокруг да около которого я столько времени кручусь. И конечно я сто раз проверяла все это подстановками, не получалось. Но подстановки были при других соотношениях, их просто не могло быть при подборе чисел. Сегодня наконец после Вашего $k<b$ у меня открылись глаза на то, что соотношения могут быть разными.
Смысл выражения все в том же сдвиге на величину $h-k=2k-c$
Ноль сдвигается вправо на $h-k$, $c$ сдвигается вправо на ту же величину (на $2k-c$). А посередине между получившимися точками - $k$
Ну если прямую провести параллельно оси $OX$ через $k$ будет понятно. Опять извиняюсь за дилетантское объяснение. :oops:

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 05:22 
Заслуженный участник


04/05/09
4596
natalya_1 в сообщении #487922 писал(а):
Это не очевидно. То есть, этого не может быть при иррациональных значениях.
Но ведь может (см. вышеприведённый пример).

natalya_1 в сообщении #487922 писал(а):
Смысл выражения все в том же сдвиге на величину $h-k=2k-c$
Ноль сдвигается вправо на $h-k$, $c$ сдвигается вправо на ту же величину (на $2k-c$). А посередине между получившимися точками - $k$
Ну если прямую провести параллельно оси $OX$ через $k$ будет понятно. Опять извиняюсь за дилетантское объяснение. :oops:
Дилетантское ещё ладно. Но вот непонятное меня не устраивает. :-)
Что значит сдвинуть ноль? Ноль - это ноль.
Короче, ничего не понял.

 Профиль  
                  
 
 Re: Попытка доказательства Теоремы Ферма
Сообщение30.09.2011, 05:24 


29/08/09
691
venco в сообщении #487923 писал(а):
natalya_1 в сообщении #487922 писал(а):
Это не очевидно. То есть, этого не может быть при иррациональных значениях.
Но ведь может (см. вышеприведённый пример).

Я имела в виду, что при иррациональных значениях не выполняется $\frac{cd}{p}=3$, потому что другие соотношения между остальными параметрами. Тот же пример с $k$ и $b$ тому подтверждение.
Проверка подстановкой меня и сбивала с толку.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 770 ]  На страницу Пред.  1 ... 22, 23, 24, 25, 26, 27, 28 ... 52  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group