1)Доказательства.
Имеется ввиду скорее методика и источник доказательств, нежели конкретная область. Меня интересует скорее внутренний процесс: каким образом и откуда возникает идея применять тот или иной способ для опровержения или доказательства какого-либо утверждения, почему выбран именно этот, а не другой способ, что происходит между предложением гипотезы и предложением идти по данному пути доказательства
Кажется, на Западе есть специальный курс «proof writing». Я не знаю, как это переводится на русский, скорее всего «начала математической логики», «основы математической логики» или что-то подобное. Это как бы первая глава учебника по математической логике с усиленной практической стороной — больше примеров доказательств, приёмы доказательств, описывает связь между естественным (русским, английским) языком и языком логики.
Но, конечно, никто вам не напишет алгоритм, как открыть теорему или доказательство. Я бы искал это не в книгах, а в статьях, блогах (
пример), просто личных беседах.
А если порекомендуете литературу, отвечающую на вопрос «каким образом и как» в математике появлялись те или иные идеи, буду очень рад, потому как плохо ориентируюсь в истории данной науки.
По истории математики книги есть. Проблемка в том, что перед тем, как читать историю математики, нужно выучить саму математику.
возможно, ответ на этот вопрос возможен только через самостоятельную практику?
Изучение математики без самостоятельной работы приносит даже меньше пользы, чем просмотр телешоу «Битва экстрасенсов».
Это будет просто развлекательная литература, снотворное.
ЛитератураИсторияВилейтнер Г. История математики от Декарта до середины XIX столетия. М., 1960
Stillwell J. Математика и ее история(2004)
Рыбников. история математики.
Цейтен. история математики в древности и в средние века.
Юшкевич. история математики.
Baron. The Origin Of Infinitesimal Calculus (Dover 1969).
Mathematics And Its History (Undergraduate Texts In Mathematics) (John Stillwell)
Orlando Merino. A Short History of Complex Numbers.
Smith. history of modern mathematics.
Proof writingA Transition to Advanced Mathematics By Smith , Eggen , St. Andre
Hammack. Book Of Proof
How to Read and Do Proofs - Daniel Solow (Wiley, 1982)
Обо всём и ни о чёмКлейн. элементарная математика с точки зрения высшей.
Курант, Роббинс. что такое математика.
Урожаи и посевы. Гротендик А. (2001).
Феферман С. Числовые системы. Основания алгебры и анализа.
Я.И.Перельман. живая математика.
Дынкин Е.Б., Успенский В.А. - Математические беседы (1952)
Успенский В.А. Что такое нестандартный анализ (1987)
Gowers. the two cultures of mathematics.
Mathematics - Real-Life Math - Everyday Use of Mathematical Concepts - (Evan M. Glazer, John W. McConnell) Greenwood Press 2002
McLarty. the rising sea Grothendieck on simplicity and generality I,2003
John Stillwell. Yearning for the impossible. AK_Peters,_Ltd.(2006)
Rotman. Journey Into Mathematics with answers. 0486453065
O'Donnel. the sources of certainty in computation and formal systems.