Как Вы определяете макросостояния для точного решения?
По значениям макропараметров. Давления, плотности и т.п. К примеру, имеющие давление среднюю плотность шариков в объеме
с относительной ошибкой
.
Где же тогда парадокс? Вы обещали парадокс в обратимой задаче.
В том, что можно представить себе и другое решение - в котором шарик сталкивает себя с пути. Именно подобное представляет собой "временной парадокс", если хотите.
Похоже, что Вы пытаетесь описать кротовую нору ОТО, не имея понятия о том, что это такое. Так вот, информирую Вас, что эта штука - односторонняя. Т.е. если она ведёт из будущего в прошлое, то попасть по ней же из прошлого в будущее, просто запустив шарик в обратном направлении, невозможно.
Предоставьте чуть больше информации, чтобы был хоть намек на доказательство этого утверждения. Желательно сразу не мне - а Кипу Торну и прочим авторам статьи. Ребята-то и не знают о грамотее
epros ;)
Но без необратимости Вы никаких парадоксов не придумаете: провести мировую линию шарика так, чтобы он с одной стороны нырнул в чёрную дыру, а с другой стороны не нырнул (потому что столкнулся с самим собой, вынырнувшим в прошлом из белой дыры) Вам не удастся.
Вообще-то "придумать" - не составляет никакого труда. Запустим так, чтобы попадя в одну из "горловин" - он выскочит из другой и столкнет себя самого с пути... Напоминаю - "парадокс" это не строгое рассуждение, а лишь пример умозаключений, ведущих к противоречивой ситуации. Не обязательно логически безупречных.
Другое дело, что весь "парадокс" - в том, что такие "решения" не являются самосогласованными. Они просто не удовлетворяют уравнениям и граничным/начальным условиям модели. Зато есть другие (шарик пролетел мимо самого себя и сбить себя с пути в воронку не сумеет), которые удовлетворяют.
Или есть прогресс и Вы начали что-то понимать ?
Тем не менее, подчеркну еще раз: парадоксальна такая ситуация, действительно - только на первый взгляд. Однако, "необратимость" - в ней может присутствовать в том же смысле, что и для самых обычных бильярдов. Термодинамической необратимости - не препятствует обратимость уравнений механики. Точно также и здесь. Вот если бы динамика модели с такими путешествиями была обязательно "проста", т.е. строго регулярная, без динамического хаоса - это действительно было бы реальной проблемой.
Вы считаете, что если задача имеет неоднозначное решение, то она сформулирована "некорректно"?
Да. См. определение "корректно поставленной задачи" в матфизике (Адамар, Тихонов).
Алгоритм движения Мухтара однозначно определён в каждый момент времени.
Дело в том, что - нет.
Что Вы ещё хотите?
Вот этого самого..
Кстати, меня предельно удивляет, что Вы не усматриваете аналогии между этой задачей и реальной задачей про бильярд Синая (когда начальное положение шаров задано с погрешностью хотя бы в нанометр).
Для бильярда Синая эта начальная погрешность - совершенно непринципиальна.
и сказали, что если я полечу в прошлое и попробую там сделать что-то приводящее к парадоксам, то этому обязательно помешают разные причины.
Я Вам сказал чуть больше. Например, есть логическая возможность того, что Вы не сможете "спутешествовать" в свое недалекое прошлое. К примеру, чтобы сделать то, что "я понел". А где-нибудь у динозавров - не факт что Вы сумеете помешать моему рождению ;)
Теперь я высказываю предположение, а что если причины мешающие нам совершить какое либо действие в настоящем действуют по такому же механизму как и в случае путешествия во времени.
Ну, в каком-то смысле - можно и так сказать. "Все что происходит - непротиворечиво". Совершить Вам какие-то действия, в конечном итоге, препятствует одна вещь - физика реального мира.
Повседневная жизнь и хорошо изученные на данный момент физические закономерности - приучили нас к мысли, что есть "физические законы", а есть "начальные условия" к ним. К примеру, уравнения движения планет - относится к первому, а заданная конфигурация их (положения и скорости)
в определенный момент времени - ко второму. Предсказать "что будет" - можно только зная и то и другое.
Совершенно не обязательно, что это положение сохранится навсегда. К примеру, "начальные условия" могут выглядеть в общем случае нелокальными.