2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение19.07.2011, 19:57 
Заслуженный участник


20/12/10
9062
juna в сообщении #469670 писал(а):
Чтобы опять не забыть: $2x^4-xy^3+y^3-y^2=0$.
Зажмем $y$ следующим образом:
$xy^3-2x^4<y^3\to y<\left ( \frac {2x^4}{x-1} \right )^{\frac{1}{3}}=f_1(x)$.
Значит $2x^4-xy^3+y^3-\left ( \frac {2x^4}{x-1} \right )^{\frac{2}{3}}<0\to y>\left ( \frac {2x^4-\left ( \frac {2x^4}{x-1} \right )^{\frac{2}{3}}}{x-1} \right )^{\frac {1}{3}}=f_2(x)$
Далее нужно как-то обосновать, что, начиная с некоторого $x$, целая часть $f_1(x), f_2(x)$ остается одинаковой, или во всяком случае в таких узких границах, начиная с некоторого $x$ не может содержаться целое число (как сие обосновать и верно ли это, пока неясно).
Мысль в целом правильная: кривая $y=y(x)$, определяемая уравнением, имеет наклонную асимптоту, и этим можно воспользоваться.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение01.08.2011, 20:27 
Заслуженный участник
Аватара пользователя


07/03/06
1898
Москва
Дальше лишь ленивый не заметит, что границы $y$ можно улучшать до бесконечности:
$f_{2i}(x)<y<f_{2i-1}(x),f_i(x)=\left ( \frac {2x^4-f^2_{i-1}(x)}{x-1} \right )^{\frac {1}{3}}, f_1(x)=\left (\frac {2x^4}{x-1} \right )^{\frac {1}{3}}$
Если бы удалось показать, что этот процесс итераций эквивалентен разложению решения в бесконечную цепную дробь, то это бы означало, что $y$ - иррациональное число.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение01.08.2011, 21:25 
Заслуженный участник


20/12/10
9062
Ниже приводится решение одного из подобных уравнений, остальные могут быть решены примерно таким же способом.

(Оффтоп)

Вот у этого уравнения
$$
2x^4-xy^3+x^2-y^2-1=0,
\eqno(*)
$$
пожалуй, самое коротенькое решение (напоминаю: решаем в натуральных числах). При $x=1$ или $y=1$ подходит только $(x,y)=(1,1)$. Покажем, что при $x>1$ и $y>1$ решений нет. Заметим, что из равенства $(*)$ вытекают неравенства
$$
 x<y<2^{1/3}x
\eqno(**)
$$
(кривая $y=y(x)$, определяемая $(*)$, прижимается к своей асимптоте). Поскольку $y^2+1 \equiv 0 \pmod{x}$, имеем
$$
 y^2+1=lx
 $$
для некоторого натурального $l$. Из сравнения
$$
 xy^3+y^2+1=x(y^3+l) \equiv 0 \pmod{x^2}
 $$
следует, что
$$
 y^3+l \equiv -y+l \equiv 0 \pmod{x},
 $$
поэтому $l=y+mx$ для некоторого целого $m$. Однако из представления
$$
 m=\frac{l-y}{x}=\frac{y^2-xy+1}{x^2}.
 $$
и оценок $(**)$ следует, что $0<m<1$. Противоречие.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение01.08.2011, 21:45 
Заслуженный участник
Аватара пользователя


07/03/06
1898
Москва
nnosipov в сообщении #472653 писал(а):
следует, что
$$ y^3+l \equiv -y+l \equiv 0 \pmod{x}, $$

Не понял. Пусть $y=5,l=1,x=7$, имеем $5^3+1\equiv 0 \mod 7$, значит $-5+1\equiv 0 \mod 7$ - противоречие.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение01.08.2011, 21:49 
Заслуженный участник


20/12/10
9062
juna, надо учесть, что $y^2+1 \equiv 0 \pmod{x}$. То есть, $y^2$ можно заменить на $-1$ в сравнении по модулю $x$.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение01.08.2011, 21:54 
Заслуженный участник
Аватара пользователя


07/03/06
1898
Москва
Да, я понял, но Вы уже ответили.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение02.09.2011, 10:47 
Заслуженный участник


20/12/10
9062
Вот ещё одно уравнение для опытов: $2x^3y-xy^3-y^3+xy^2-1=0$. Здесь работают оба подхода, на которые я намекал выше, но, может быть, есть и какой-нибудь третий?

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение02.09.2011, 12:24 
Заслуженный участник


03/01/09
1701
москва
Нет ли ошибки в условии?Т.к. получается,что 1 делится на $y$,т.е. $y=1.$

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение02.09.2011, 12:40 
Заслуженный участник


20/12/10
9062
mihiv, конечно, есть! Спасибо, что обратили внимание. Пусть будет, например, вот так: $2x^3y-xy^3-y^3+x^3+xy^2-1=0$ (в принципе, неважно, что туда напихать со степенью $\leqslant 3$). Если опять случайно какая-нибудь тривиальность выйдет, дайте знать, please.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение03.09.2011, 17:50 
Заслуженный участник


20/12/10
9062
Предыдущий пример вышел немного корявым, но там действительно есть два принципиально разных подхода к решению. Вот такой пример будет поэстетичней: $x^2(y^2-2x^2)=y^3+x$. Но здесь пока проглядывается только один способ решения. Не исключаются, конечно, и какие-нибудь "левые" подходы, увидеть которые было бы по меньшей мере любопытно.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение08.09.2011, 10:58 
Заслуженный участник


03/01/09
1701
москва
Пусть $d=gcd(y,x)$,тогда $x=dx_1,y=dy_1$,после подстановки в уравнение получим $$d^3x_1^2(y_1^2-2x_1^2)=d^2y_1^3+x_1\qquad (1)$$Из полученного уравнения видим,что $x_1=d^2x_2$,подставляем это выражение для $x_1$ в (1),получим $$d^5x_2^2(y_1^2-2d^4x_2^2)=y_1^3+x_2$$

Видим,что $x_2|y_1^3$,но т.к. $y_1$ и $x_2$ взаимно простые,то $x_2=1$.Т.е. приходим к уравнению$$d^5(y_1^2-2d^4)=y_1^3+1 \qquad (2)$$

Из (2) следует,что $d^5y_1^2>y_1^3$ или $d^5>y_1.$

Т.к. правая часть (2) делится на $d^5,y_1=kd^5-1$,но $y_1<d^5$ поэтому $y_1=d^5-1$,подставляем это выражение в(2) и получим$$d^4(d-2)=2$$

Решений нет.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение08.09.2011, 12:36 
Заслуженный участник


20/12/10
9062
mihiv в сообщении #481388 писал(а):
Т.к. правая часть (2) делится на $d^5,y_1=kd^5-1$ ...
Откуда последнее равенство? Ведь $y_1^3+1$ делится на $d^5$, т.е. $y_1^3=kd^5-1$ для некоторого натурального $k$.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение08.09.2011, 13:05 
Заслуженный участник


03/01/09
1701
москва
mihiv в сообщении #481388 писал(а):
Т.к. правая часть (2) делится на $d^5,y_1=kd^5-1$

Да,здесь ошибка.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение08.09.2011, 13:23 
Заслуженный участник


20/12/10
9062
mihiv, в любом случае спасибо. Такого рода попытки всегда интересны и полезны.

 Профиль  
                  
 
 Re: Найти все пары $(x,y)$ натуральных чисел, для которых
Сообщение09.09.2011, 17:57 
Заслуженный участник


20/12/10
9062
Уравнение $x^2(y^2-2x^2)=y^2+xy$ представляет, пожалуй, самый простой пример этого типа (здесь $y$ легко выразить через $x$). Также прошу поэкспериментировать.

Как выяснилось, слишком просто --- из-за однородности правой части. Подправим это: $x^2(y^2-2x^2)=y^2+xy+1$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 80 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Facebook External Hit [crawler]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group