0. Я прошу прощения за краткость и безапелляционность моей фразы "формулы для решения нет". Она верна или неверна в зависимости от уточнения вопроса. И, уточнив его по своему разумению, я, возможно, ошибся. Хотя полагаю, что был прав. Есть по крайней мере две трактовки вопроса, в которых это утверждение верно, и две, в которых оно ложно. а. Есть ли формула в радикалах для корней, подобная формулам для 3-й и 4-й степеней? - Нет. б. Есть ли явная формула вычисления корней 5-й и выше степеней, опирающаяся на сведения школьника или первокурсника? - Нет (хотя я не поручусь за все школы в будущем...). в. Есть ли вообще доступный способ вычислить корни для конкретного уравнения? - Есть, и это легко реализуемый алгоритм, и даже не один. г. Есть ли выражение корней через функции, отличные от элементарных? Есть, и хотя для вычислений они крайне неудобны, но пригодны для исследования поведения корней.
Я, судя по уровню задачи, и тому, что обращаются за помощью на самом начальном этапе, решил, что случай (б) и оттого ответил "нет". Затем перешёл к тому, как решать на практике.
1. Абсолютная величина х равна х или -х в зависимости от знака х. Если мы его заранее не знаем - надо рассматривать оба варианта. Однако после получения решения для варианта, в котором величина под знаком модуля положительна, надо проверить, действительно ли она будет при этом решении положительна. Аналогично и для отрицательной. В приведенной задаче два выражения под знаком абсолютной величины, так что, вообще говоря, вариантов надо рассмотреть 4. Но очевидно, что две пары из них эквивалентны друг другу, так что только два (а вот если к абсолютной величине на одной стороне выражения что-то прибавить...) 2. Выписав эти два варианта и сократив подобные, получим, вообще говоря, уравнения 5-й степени. Но данный пример явно учебный (что укрепляет мою веру в вариант "б"), так что в одном варианте член с пятой степенью сокращается, и остаётся кубическое уравнение (формулу для которого школьнику не дают, но задача учебная, и он сообразит, что один корень, х=1, угадывается, и делением на х-1 получается квадратное уравнение) , а во втором, где уравнение 5-й степени, "нерешаемое" угадывается корень х=0, делением на х уравнение приводится к 4-й степени, притом к биквадратному уравнению, сводимому к квадратному. Выписав все полученные корни (1 и корни квадратного уравнения в первом и 0 и 4 корня биквадратного во втором), проверяем их, подставив в исходное уравнение и выяснив, совпадают ли знаки выражений под модулем в первом и противоположны ли во втором случае. Если нет - это корни от другого уравнения. Если да - пишем их в ответ.
|