Поэтому придётся доказать, что какой-то из них (меньший) - тот, что нужен.
Из чисто геометрических соображений (монотонность плюс выпуклость показательной функции) следует, что левый корень уравнения
-- устойчивый (т.е. сходимость будет именно к нему), а правый -- нет. При этом сходимость будет с любого начального приближения
, меньшего правого корня (если, конечно, корня именно два, т.е. если основание достаточно мало). Это всё тривиально.
Неочевидно, что само основание
в качестве начального приближения годится, т.е. что оно меньше правого корня. Фактически оно меньше даже
левого корня, и это -- факт довольно грубый. Левый корень во всяком случае больше, чем корень уравнения
(полученного линеаризацией показательной функции). Т.е. достаточно убедиться в том, что
, т.е.
, ну а это уже вполне очевидно. Естественно, всё это при
; но ведь при
корней-то уж точно нет.
А вот верхнюю границу допустимых значений
, т.е.
, надо уже считать. Но и это делается легко и, главное, без раздумий -- надо просто решить систему