Посмотрите пожалуйста это видео
http://rutube.ru/tracks/4758962.html?v= ... 22819cc864 и объясните мне в чём моя ошибка? Кроме очевидного, что на ноль делить нельзя. На сколько я знаю из-за неопределнности во время этого процесса, математики просто договорились, что не будут делить на ноль. И мне стало интересно попробовать разделить. В результате получилось это видео. Я его сделал таким тупым, чтобы до каждого донести мысль. Вам математикам имеет смысл смотреть с 6 минуты. Пожалуйста конструктивно расскажите в чём моя ошибка.
В виде текста:
Как известно, деление это операция обратная умножению. Это все знают с начальных классов. Но не многие знают, что на самом деле деления не существует. Есть только операция умножение. Поэтому, чтобы объяснить вам способ деления на нуль, придётся рассказать сущность процесса умножения. Для наглядности воспользуемся математической моделью – коробка с бесконечным числом спичек. Запомните, что это условность. Коробков с бесконечным числом спичек в природе не существует. Но, такого рода условность никак не будет влиять на результат, который в ходе рассуждений мы получим. Ну, что ж приступим:
Мы будем поэтапно брать из коробка спички и ложить его на лист бумаги. Количество спичек лежащих на листе, означает то что мы будем иметь в итоге. И так берём одну спичку один раз и положим на лист.на столе теперь будет лежать одна спичка. Математическая запись этого действия будет выглядить так: 1*1=1, тоесть взяли одну спичку один раз, в результате имеем одну спичку. Затем уберём спичку назад в коробок. Потом вытащим две спички три раза или три спички два раза, получим шесть спичек лежащих на столе . Положим назад. Потом вытащим n спичек m раз, на столе будет n*m. Снова положим назад.
Теперь возмем одну спичку нисколько раз (ниразу), получим нисколько спичек лежащих на столе, поскольку мы ни разу её не взяли. Математическая запись: 1*0=0. Где 0 (нуль) обозначает пустоту, ничто, нисколько, нираз, эквивалентна выражению "не берется". Поскольку на столе нету спички, мы не можем её положить в коробок. Что же, тогда просто возмём другое количество спичек нуль раз, вдруг стол сумеем заполнить спичками? А нет, стол как был пуст так и остался. Поскольку какое бы число спичек нисколько (нуль) раз не бери получишь нисколько, пустоту,нуль. Математематическая запись 0*n=0, где n любое число. Можно так же "взять" (прим. Пустота не материальна, поэтому её нельзя взять впринципе, поэтому слово внесено в кавычки) пустоту некоторое количество раз (n-раз), но в результате все равно получишь пустоту, так как её попросту нет. Из ничего получить что-то нельзя, это закон природы. С этим думаю все согласятся. А что если взять нисколько (нуль) спичек нисколько (нуль) раз? Что же получиться? Нуль, тоесть нисколько? 0*0=0? Нет! Почему нет? Потому, что когда вы берете что-либо нисколько раз, вы впринципе не можете получить тоже самое. Умножение на нуль, говоря простым языком, означает, что вы попросту не берете объект умножения. Поэтому если мы хотим не "взять" пустоту, мы должны взять что-то другое, что принципиально отличается от пустоты (нуль), а это любые вещественные числа отличные от нуля! Все что существует, не является пустотой и не состоит из пустоты, но при этом содержит её бесконечное количество раз.
Выходит чтобы не получить пустоту ("взять" её ниразу) мы должны взять всё что угодно кроме пустоты. Следствие: если нужно "взять" пустоту (нуль) нисколько раз (нуль раз) или попросту говоря не "взять" её, нужно взять любое число отличное от пустоты (нуля)! Если мы все-таки получим пустоту, то мы ошиблись, так как выходит, что мы её все-таки "взяли", хотябы бесконечномалый раз. Математическая запись: 0*0=n, где n-любое число отличное от нуля. теперь используя эту формулу выведем:
n/0=0, это означает что в любом числе n содержится нисколько пусоты компонентов образующих n или нужно нисколько пустоты чтобы получить n. Логично же что из ничего получить что-то не возможно, поэтому любое существующее число (предмет) не может состоять из одной пустоты. Именно это и показывает опперация - деление: сколько надо взять делителя, что бы получить делимое. В даном случии одного делителя (нуль) не хватает. Вывод: любое число отличное от нуля не может состоять из одних нулей! Но тем не менее любое число имеет в себе бесконечное количество нулей, но оно из них не состоит. Только сам нуль состоит из бесконечного числа нулей! В доказательство разделим нуль на нуль используя формулу что вывели высше: n*0=0.
0/0=n
Вывод: нуль состоит из произвольного количества нулей! Потому что пустота состоит из пустоты, тоесть не состоит из ничего сколь угодное количество раз, исключая только ниразу! Парадокс в том, что пустота может существовать только тогда когда её "взяли". Если её не "взять", то она перестаёт существовать, появляется её противоположность непустота, материя. Поэтому пустоту можно делить на пустоту и получить любое количество пустоты отличное от нуля. Потому что пустота не состоящая из пустоты, не пустота, а все что угодно кроме пустоты!
Теорема доказана. Возведение нуля в нулевую степень так же возможно.
Любое число возведенное в нулевую степень равняется еденице.
Например: 5^0=1 , эта запись равносильна выражению 5^1*5^(-1)=1 или 5*1/5=1 или 5:5=1.
Для нуля данное правило так же применимо. Получается 0^0=0^1*0^(-1)=0/0
А ноль делённый на ноль равняется некой константе, отличной от нуля!