2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Не точно, так хоть приближенно?
Сообщение04.08.2011, 18:48 


15/12/05
754
В.О. в сообщении #473158 писал(а):
Теорема (?) Для любого доcтаточно большого целого числа можно найти показатель степени такой, что это число не является корнем уравнения Ферма с показателем степени $n$.


Такая теорема на форуме уже доказана, для $n$, которое в максимально оптимизированном виде - простое $p$.
Теорема: Великая Теорема Ферма не имеет целочисленных корней во всех абсолютно случаях, когда показатель степени - простое число $p$ больше половинки $x+y-z$.
Поэтому, "задумывая" достаточно большое целое число $x$ или $y$, всегда найдется $p$ > 1/2 от этого самого большого целого числа, при котором уравнение Ферма не будет иметь целочисленных корней, согласно данной теоремы.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 05:42 


12/09/06
617
Черноморск
ananova в сообщении #473501 писал(а):
Теорема: Великая Теорема Ферма не имеет целочисленных корней во всех абсолютно случаях, когда показатель степени - простое число больше половинки .

Звучит похоже, но сформулировано не очень аккуратно. Будет лучше, если Вы дадите ссылку на доказательство, а я попытаюсь разобраться.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 08:34 


15/12/05
754
В.О.

Да, пожалуй, не очень аккуратно. Вот так будет правильней (c привязкой к личности автора):

Теорема Вахтерова: Уравнение $x^p+y^p=z^p$ не имеет целочисленных решений, для $p> \frac {(x+y-z)} 2$, где p - простое число, больше 2, x, y, z - целые числа.

Доказательство и обсуждения - здесь: http://dxdy.ru/post295018.html#p295018
Сейчас, конечно, можно подредактировать и подсократить, но, в целом, доказательство достаточно легко проверяется.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 09:25 
Аватара пользователя


22/12/10
264
Как-то здесь «для» неуместно, кажется. Наверное, имеется ввиду «не имеет целочисленных решений, таких, что …»?

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 11:10 


15/12/05
754
Portnov

Вот так, аккуратней?

Теорема Вахтерова: Уравнение $x^p+y^p=z^p$ не имеет целочисленных решений, таких, что: $p> \frac {(x+y-z)} 2$, где p - простое число, больше 2; x, y, z - целые положительные числа.

Или так?

Теорема Вахтерова: Уравнение $x^p+y^p=z^p$ не имеет целочисленных решений, при следующих значениях неизвестных: $p> \frac {(x+y-z)} 2$, где p - простое число, больше 2; x, y, z - целые положительные числа.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 15:42 


15/12/05
754
Справедливость теоремы следует из невозможности нарушения тождества:

$${x+y-z = 2pK}$$
и следующего из него:
$$p = {\dfrac {x+y-z} {2K}}$$$K$ - целое положительное число, кратное некоторым множителям $x, y, z$.

Важно! Если тождество не выполняется, то, следовательно, и основное уравнение Ферма не будет иметь целочисленных решений.

Нарушим тождество, изменив $p$ в сторону увеличения.

Пусть $p$: $$p > {\dfrac {x+y-z} {2K}}$$ В этом случае тождество не выполняется.

Тем более тождество не выполняется, при $p > {\dfrac {x+y-z} {2}}$, т.к.
$${\dfrac {x+y-z} {2}} > {\dfrac {x+y-z} {2K}}$$

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 19:59 


12/09/06
617
Черноморск
ananova
Неравенство для р написано неправильную сторону.
И непонятно, что такое К.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 20:42 


15/12/05
754
В.О. в сообщении #473717 писал(а):
ananova
Неравенство для р написано неправильную сторону.
И непонятно, что такое К.



По поводу $K$.
$2K$ равно кубическому корню из $(x+y)(z-x)(z-y)$ для $p=3$. Для $p=5$ - выражения более сложные.

По поводу неравенства.
Рассмотрим тождество $x+y-z=2pK$.
Подставим $n$ ($n=p+1$), вместо $p$ в рассматриваемое тождество.

Тождество нарушится.

$$n> p= \dfrac {x+y-z} {2K}$$

Если $n=(p+a+1)$, то, соответственно:$$n>(p+a)= \dfrac {x+y-z} {2}$$

Так что знаки неравенства поставлены в правильную сторону.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение05.08.2011, 23:30 


12/09/06
617
Черноморск
Извините, все это выглядит как поток сознания не совместимый с математикой.
Но формулировка теоремы выглядит правдоподобно. Может быть кто-то сумеет все это подправить...но не я.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение06.08.2011, 07:58 


15/12/05
754

(Оффтоп)

По-моему, любой новый раздел математики выглядит как поток сознания не совместимый с математикой.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение06.08.2011, 10:36 
Заслуженный участник


20/12/10
9072
В.О. в сообщении #473755 писал(а):
Может быть кто-то сумеет все это подправить...но не я.

Посмотрите коротенькую заметку http://kvant.mirror1.mccme.ru/1991/02/m ... y_ferm.htm Там очень просто и ясно объясняется, почему справедливо более сильное утверждение: если $x$, $y$, $z$ --- натуральные числа, $p>3$ --- простое число, для которых $x^p+y^p=z^p$, то $x+y-z \geqslant 6p$.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение06.08.2011, 13:52 


12/09/06
617
Черноморск
nnosipov
Тут следовало бы задаться вопросом о точности, т.е. какой самый большой коэффициент перед р можно поставить в этом утверждении? Но после доказательства БТФ вся эта деятельность теряет смысл.
Хотя как знать. Может это понадобится для элементарного доказательства?

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение06.08.2011, 19:13 


15/12/05
754
Если $x$ и $y$ - целые положительные числа, а $z$ - не целое число, то в вышеприведённом тождестве правая часть - не целое число.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение07.08.2011, 16:47 


12/09/06
617
Черноморск
Совсем просто доказывается следующее утверждение:
Если положительные числа $x,y,z$ удовлетворяют уравнению $x^n + y^n =z^n$ и $x=\max (x,y)$, то $n \leq \frac{\ln2} {\ln\frac z x}$
Д-во. Пусть неравенство в условии нарушается и $n \succ \frac{\ln2} {\ln\frac z x}$. Тогда
$0 = x^n + y^n  - z^n \leq 2x^n - z^n \prec 0$. Противоречие.
Здесь даже не нужно, чтобы числа были целыми.

 Профиль  
                  
 
 Re: Не точно, так хоть приближенно?
Сообщение09.08.2011, 11:27 


15/12/05
754
А в чём противоречие, растолкуйте? У Вас $x>y$, правильно?
Т.е. 2x^n-z^n > 0...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 35 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group