2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Многочлен от двух переменных
Сообщение13.12.2005, 08:14 
P(x,y)-многочлен с действительными коэффициентами от двух действительных переменных x и y. Известно, что все его корни ( т.е. точки (x,y), в которых P(x,y)=0) изолированы - каждый корень обладает окрестностью, в которой нет других корней.
Надо доказать (или привести контрпример),что
1) при всех x,y P(x,y)>=0 либо при всех x,y P(x,y)<=0
2) при (x,y)->infin P(x,y) равномерно стремится к +infin (+ для определённости)

 
 
 
 
Сообщение13.12.2005, 08:26 
По-моему, вы не очень хорошо сформулировали условие. "Известно, что все его корни изолированы" - это условие задачи, а не некотороый факт о многочленах. А то я уже было испугался.

Есть идея по решению, но надо еще подумать.

 
 
 
 
Сообщение13.12.2005, 09:31 
Аватара пользователя
:evil:
1) можно доказать от противного, используя только непрерывность многочлена.

 
 
 
 
Сообщение13.12.2005, 10:35 
незванный гость писал(а):
:evil:
1) можно доказать от противного, используя только непрерывность многочлена.


U={P>0}, V={P<0}, N={P=0}
Так как P-непрерывная функция, то множества U и V открытые, а множество N замкнутое.
U, V, N попарно не пересекаются и в обьединении дают всю плоскость.
Из условия задачи следует, что множество U+V(объединение) = R^2-N связно.
Так как U и V - открытые, то одно из них пустое.

 
 
 
 
Сообщение13.12.2005, 11:06 
Аватара пользователя
:evil:
Padawan писал(а):
U={P>0}, V={P<0}, N={P=0}
Так как P-непрерывная функция, то множества U и V открытые, а множество N замкнутое.
U, V, N попарно не пересекаются и в обьединении дают всю плоскость.
Из условия задачи следует, что множество U+V(объединение) = R^2-N связно.
Так как U и V - открытые, то одно из них пустое.

Красиво. Меня смущают только последние две фразы. Я бы (на месте преподователя) попросил их обосновать. На теоремы сослаться. Скажем так: связность суть понятие топологии клеточных пространств (~4-5 семестр матмеха). А задача сия, в общем, на первый курс матана тянет.

 
 
 
 
Сообщение13.12.2005, 11:35 
:)
Топ. пространство называется (одно из определений) связным, если его нельзя представить в виде дизъюнктного объединения двух непустых открыто-замкнутых множеств. У нас U+V - пространство, U и V - открыто-замкнутые непересекающиеся множества в этом пространсве->одно из них пустое.
Связность U+V cледует, например, из линейной связности (она очевидна, т.к. N-дискретное множество).

 
 
 
 
Сообщение13.12.2005, 12:16 
Аватара пользователя
:evil:
Padawan писал(а):
Связность U+V cледует, например, из линейной связности

А как следует? И как Вы будете определять линейную связность? :oops: Мне, к стыду моему, по-прежнему неочевидно.

2), кстати, неверно.

 
 
 
 
Сообщение13.12.2005, 12:32 
незванный гость писал(а):
2), кстати, неверно.


:shock: Вот те на! А контрпример (многочлен) ?

Есть теорема, что из линейной связности следует связность. А для открытых подмножеств R^n эти понятия вообще совпадают.
Множество N имеет такую структуру: в любом круге с центром в начале координат конечное число точек из N. По-моему очевидно, что R^2-N линейно связно.

 
 
 
 
Сообщение13.12.2005, 18:35 
Аватара пользователя
:evil:
Padawan писал(а):
Есть теорема, что из линейной связности следует связность. А для открытых подмножеств $\mathbb R^n$ эти понятия вообще совпадают.

Верно, только вот как?

Padawan писал(а):
Множество N имеет такую структуру: в любом круге с центром в начале координат конечное число точек из N.

Верно. Почему?

Padawan писал(а):
По-моему очевидно, что $\mathbb R^2 \setminus {\rm N}$ линейно связно.

Опять же. Переход верный, но неочевидный лично мне.

~~~
Не сочтите за занудство. У Вас очень красивое доказательство. Пока я заполнял в нем дырки - для себя - я понял как упростить и сократить свое доказательство (шедшее по совершенно другой схеме) до буквально нескольких фраз. Но Ваш путь как бы просит вопросов. Он базируется на глубоких общеизвестных фактах из другой теории.

Простите, но Ваше задача выглядит учебной, причем из начала курса математики. Ссылаться на топологические факты - от Вас могут потребовать построения этой теории. Как я своими вопросами.

Скажите, пожалуйста, если я не прав. Во-первых, отстану. Во вторых - сразу.

 
 
 
 
Сообщение13.12.2005, 19:37 
А как насчёт контрпримера к пункту 2) ?

 
 
 
 
Сообщение13.12.2005, 19:39 
Аватара пользователя
:evil:
Да ради Бога. Я был убежден, Вам интересно подумать. $1+x^2$.

 
 
 
 
Сообщение13.12.2005, 20:02 
Аватара пользователя
:evil:
Еще подумав, так и проще - константа.

 
 
 
 
Сообщение14.12.2005, 06:36 
:oops:
Я предполагал, что хотя бы один корень должен быть....

 
 
 
 
Сообщение14.12.2005, 08:16 
Если есть корень, то вдоль любого луча, выходящего из этого корня P(x,y) стремится к +бесконечности, но как доказать, что это стремление равномерно по всем направлениям?

 
 
 
 
Сообщение14.12.2005, 21:36 
Аватара пользователя
Подскажите определение равномерного стремления к бесконечности

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group