2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Как решить систему уравнений?
Сообщение03.07.2011, 14:23 
$$
\begin{cases}
a+b=cd \\
c+d=ab 
\end{cases}
$$
Спасибо!

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 14:28 
Аватара пользователя
В смысле? Что нужно найти-то?

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 14:30 
Someone в сообщении #464684 писал(а):
В смысле? Что нужно найти-то?

Нужно найти а, b, c, d целые.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 14:49 
На первый взгляд совсем невинно, но на самом деле вполне содержательная задачка. Правда, очень старая. Впрочем, периодически реанимируется в разных видах. Последний раз --- на XII Кубке памяти Колмлгорова.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 14:58 
Виета хочется применить с первого же взгляда.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 15:01 
Хм. Вроде как простая...
$a+b+c+d=ab+cd$
если $a>1, \ b>1, \ c>1,\ d>1$, то $a+b+c+d \le ab+cd$, а равенство возможно только если $a=b=c=d=2$.
Если одно из чисел равно 1, например $a=1$, то $1+c+d=cd
$, единственно решение $c=2, \ d=3, \ b=5$, ну и ещё 3 перестановки.
Если одно из чисел равно 0, то получаем решение $a=b=c=d=0$, или же
$a=0, \ b=-c^2, d=-c, c \in N$ плюс перестановки.
Если одно из чисел отрицательное, то ещё одно должно быть отрицательным, и можно записать это так:
$a-b'+c-d'=ab'+cd'$, где $b'=-b>0, \ d'=-d>0$, но тут для целых также очевидно, что $a-b'<ab, \ c-d'<cd'$ , тоесть в таком случае решений нет.
Вот собственно и всё.
Praded в сообщении #464696 писал(а):
Виета хочется применить с первого же взгляда.

По-моему, даже если из него что-то и можно будет вытянуть, то это будет намного тяжелее, чем такой вот перебор.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 15:03 
Начните химичить с теоремой Виета.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 15:18 
MrDindows в сообщении #464698 писал(а):
Если одно из чисел равно 0, то получаем $a=b=c=d=0$

Да?

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 15:41 
MrDindows в сообщении #464698 писал(а):
Если одно из чисел отрицательное, то ещё одно должно быть отрицательным, и можно записать это так:
$a-b'+c-d'=ab'+cd'$, где $b'=-b>0, \ d'=-d>0$, но тут для целых также очевидно, что $a-b'<ab, \ c-d'<cd'$ , тоесть в таком случае решений нет.

Вы здесь бесконечно много решений потеряли.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 15:48 
nnosipov в сообщении #464709 писал(а):
Вы здесь бесконечно много решений потеряли.

Ну так уж и бесконечно много.

(т.е. формально да, но все они были потеряны ещё раньше -- при рассмотрении случая, когда одно из чисел нулевое. А вообще тягомотина какая-то, в том что касается записи ответа.)

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 15:59 
ewert в сообщении #464712 писал(а):
Ну так уж и бесконечно много.

Именно бесконечно много, и они потеряны именно в этом случае. Вот эти решения: $(a,b,c,d)=(-1,b,-1,1-b)$. Ответ, кстати, выглядит вполне симпатично, если нарисовать картинку (достаточно изобразить лишь возможные пары $(a,b)$).

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 16:06 
nnosipov в сообщении #464714 писал(а):
$(a,b,c,d)=(-1,b,-1,1-b)$.

А, ну да, это я небрежно рассмотрел случай $a=-1$. Почему-то решил, что уравнение $(c+1)(d+1)=0$ имеет только решение $c=-1,\ d=-1$. (По аналогии со случаем $a=1$ -- в уме прокручивал.)

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 16:13 
Задачу лучше в таком виде сформулировать: найти все пары $(a,b)$ целых чисел, для которых квадратный трёхчлен $x^2-abx+a+b$ имеет целый корень. Хотя бы меньше проблем будет с записью ответа.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 16:47 
Я считал в лоб. Равенство нулю одного из чисел равносильно равенству нулю одной из сумм. В этом случае серии решений очевидны. Если же ни суммы, ни произведения в ноль не обращаются, то можно разделить одно уравнение на другое и получить $(\frac1a+\frac1b)(\frac1c+\frac1d)=1$. Если все числа по модулю больше единицы, то все они должны быть по модулю равны двойке (иначе оба сомножителя по модулю не превосходят единицы и хоть один из них меньше единицы); исходной системе удовлетворяет при этом только $a=b=c=d=2$. И остаётся рассмотреть только два (с точностью до перестановок) случая: $a=1$ и $a=-1$. В обоих случаях исключение из исходной системы $b$ даёт простенькое уравнение для $c,d$.

 
 
 
 Re: Как решить систему уровнений?
Сообщение03.07.2011, 17:06 
А я выписывал дискриминант $D=(ab)^2-4(a+b)$ квадратного трёхчлена (см. выше) и выяснял, когда он точный квадрат. Эта задача и сама по себе интересна, да и приём вполне стандартный.

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group