ins- |
Circle and middles 18.06.2011, 16:13 |
|
13/10/07 755 Роман/София, България
|
Let k is the circumference of the triangle ABC. K is the middle of the arc AB (not containing C). L and M are the middles of the sides AC and BC. N and P are the intersection points of KL and LM with k. Prove that L, M, N, P are concyclic.
|
|
|
|
|
nnosipov |
Re: Circle and middles 18.06.2011, 18:17 |
|
Заслуженный участник |
|
20/12/10 9110
|
У Вас опечатка: вместо должно быть .
|
|
|
|
|
ins- |
Re: Circle and middles 18.06.2011, 20:12 |
|
13/10/07 755 Роман/София, България
|
Последний раз редактировалось ins- 18.06.2011, 20:14, всего редактировалось 1 раз.
You are correct. I'm sorry for that. The problem can be generalized. Any ideas how can it be solved?
|
|
|
|
|
ins- |
Re: Circle and middles 18.06.2011, 23:33 |
|
13/10/07 755 Роман/София, България
|
I don't know if that helps to solve the problem - the statement is true not only if L and M are middles of AC and BC. It is true for points L and M such that AL/LC=BM/MC.
|
|
|
|
|
ins- |
Re: Circle and middles 19.06.2011, 11:19 |
|
13/10/07 755 Роман/София, България
|
Последний раз редактировалось ins- 19.06.2011, 11:19, всего редактировалось 1 раз.
I'm sorry it is an easy 8-th grade problem. Don't loose your time.
|
|
|
|
|
|
Страница 1 из 1
|
[ Сообщений: 5 ] |
|
Модераторы: Модераторы Математики, Супермодераторы