Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Let k is the circumference of the triangle ABC. K is the middle of the arc AB (not containing C). L and M are the middles of the sides AC and BC. N and P are the intersection points of KL and LM with k. Prove that L, M, N, P are concyclic.
nnosipov
Re: Circle and middles
18.06.2011, 18:17
У Вас опечатка: вместо должно быть .
ins-
Re: Circle and middles
18.06.2011, 20:12
Последний раз редактировалось ins- 18.06.2011, 20:14, всего редактировалось 1 раз.
You are correct. I'm sorry for that. The problem can be generalized. Any ideas how can it be solved?
ins-
Re: Circle and middles
18.06.2011, 23:33
I don't know if that helps to solve the problem - the statement is true not only if L and M are middles of AC and BC. It is true for points L and M such that AL/LC=BM/MC.
ins-
Re: Circle and middles
19.06.2011, 11:19
Последний раз редактировалось ins- 19.06.2011, 11:19, всего редактировалось 1 раз.
I'm sorry it is an easy 8-th grade problem. Don't loose your time.