А Вы измените в предыдущей формуле знак
- и "попадется".
Конечно, уже зная ответ из решения, почему бы и нет? Хотя, впрочем, изменение знака в формулах частных случаев сонаправленного и встречного движения, регулируется изменением знака косинуса угла в формуле:
для общего случая произвольного угла направления скорости
относительно направления
.
Или Вы считаете, что это не так, и что соотношение, впервые появившееся в § 4, нужно применять и в § 3, совершенно не обращая внимания, при каких условиях это соотношение имеет смысл?
Не считаю. Просто в § 3, хоть она и выводится, но почему-то не до конца, а остается в виде полуфабриката, который еще надо собрать по запчастям, к тому же разбросанным по разным страницам. Зато в более сформировавшемся виде формула фигурирует уже в § 4, как формула частного случая для
.
То обстоятельство, что выражение
может означать формулу рассинхронизации часов, фиксированных в точке
при наблюдении из ИСО S', причем, в точно такой же формуле преобразований, собственно, и вызвало мое недоумение. Потому, еще раз спасибо за разъяснения.
Я вижу пока - действительно бессмысленное равенство
Ваши проблемы. Но таки равенство. Зачастую, при заданной фиксированной координате часов в точке
движущейся ИСО S', излишне каждый раз (!) рассчитывать (без особой на то необходимости) новую координату
в покоящейся ИСО S.
Да и сама формула много проще и логичнее – замедление времени по часам в начале координат
и плюс-минус постоянная рассинхронизация часов в фиксированной точке координат
, в зависимости от заданного направления движения. По мне – так очень удобно.
Но тогда возникает другой вопрос – зачем инвариантность скорости света необходимо непременно привязывать к интервалу, причем с помощью бесконечно близких событий (Л-Л, т. 2, гл. 1, § 2, стр. 18)?:
Не обязательно с помощью бесконечно близких событий. Это место по ЛЛ-2 вызывает затруднения у читателей
Вот что мне нравится – "у читателей". Типа – то ли Донцову взять почитать, то ли Ландафшица, то ли Бушкова? Или вызывает затруднения у обучающихся, обучающих, да и вообще – у профессионалов? Это не Вы часом тиснули примечание к статье в Вики «Интервал»:
Цитата:
Это место в доказательстве, приводимом в учебнике Ландау и Лифшица, довольно нетривиально при кажущейся простоте. Возможно, Ландау с его любовью к шуткам решил здесь проверить, насколько читатели хорошо понимают изложение, с виду простое, но содержащее незаметные подводные камни. Хотя, конечно, в каком-то смысле рассматриваемое утверждение должно быть верным, исходя хотя бы из верного результата доказательства. Однако детальное рассмотрение того, почему коэффициент оказывается просто числом, не зависящим, например, от угла между вектором скорости и вектором, соединяющим точки событий, интервал между которыми рассматривается, в этом доказательстве опущено: его предлагается восстановить читателю.
Хм – восстановить читателю. Причем, по собственному желанию и разумению.
В моем представлении, всё упирается в распространение света. И выбор тут невелик:
1. Баллистическое распространение Ритца.
2. Каким-то непостижимым образом свет действительно распространяется равномерно во всех направлениях в каждой из ИСО.
3. Свет распространяется аналогично звуку.
Баллистическое распространение опровергнуто наблюдениями.
Второй случай порождает такие химеры как две (и более, по количеству ИСО) сферы распространения света. Кроме того, в таком случае, отпадает необходимость в эффектах СТО, что также не соответствует наблюдениям.
В третьем случае, опять же – два варианта:
1. Либо разность скорости распространения света и скорости ИСО полностью компенсируют эффекты СТО, описываемые преобразованиями Лоренца, благодаря чему регистрируемая скорость света всегда постоянна.
2. Либо приходится привлекать интервал с бесконечно близкими событиями (?) для выравнивания постоянности скорости света относительно различных ИСО.
По-моему так. Выбирай, что нравится.