2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Число из суммы корней
Сообщение09.06.2011, 12:45 
Аватара пользователя
polyedr в сообщении #456044 писал(а):
Наверное что-то вот такое $\sqrt{2^{i_1}3^{i_2}...7^{i_6}}$
Учитывая, что из под корня можно кое-что вытащить ($\sqrt{7^{15}}=7^7 \sqrt{7}$), будет ли число различных слагаемых конечно?

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 12:55 
Аватара пользователя
jetyb, что-то слишком мудрено, а как доказать, что такая комбинация существует?

-- Чт июн 09, 2011 13:59:31 --

Только что видел пост форумчанина jetyb, а теперь где-то пропало.

-- Чт июн 09, 2011 14:02:10 --

TOTAL, наверное будет, но все-таки эти радикалы мне почему-то не дают покоя.

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 13:34 
polyedr
Удалил, т.к. выше по сути уже все рассказали.

Просто при возведении нашего числа в натуральную степень всегда будет получаться линейная комбинация различных корней.
Если же упрощать выражения, исключая квадраты из-под корня, то очевидно что число типов встречающихся корней будет ограниченнм.
(не больше $2^6$ для шести разных корней).
Представьте себе рациональночисленную матрицу, в строках которой записана линейная комбинация всех возможных корней при возведении в некоторую степень.
Количество столбцов у матрицы ограничено, строк же мы можем взять сколько угодно(по одной строке на каждое натуральное число)
Следовательно существует такая линейная комбинация строк, которая дает строку из нулей.
Коэффиценты этой комбинации и есть коэффиценты искомого многочлена.

Здесь проблема только в оптимизации такого алгоритма.

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 14:19 
Аватара пользователя
Хм, как все просто-то!

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 14:40 
polyedr в сообщении #456080 писал(а):
Хм, как все просто-то!


Проще и полезней доказать, что если a и b алгебраические, b не равно нулю, то a+b,ab,a/b - алгебраические. Доказательство - явное построение соотв. аннулирующего многочлена, используя a,b и все их сопряженные (корни минимальных многочленов).

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 14:48 
Аватара пользователя
А вот интересно, почему неперово число - трансцендентное, ведь оно ж тоже является суммойалгебраических чисел(если раздожить в ряд Тейлора)?!

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 14:53 
Аватара пользователя
Можно разложить даже в сумму конечных десятичных дробей:$e=2+0,7+0,01+0,008+0,0002+0,00008+...$
Но их будет бесконечное количество.

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 14:54 
Любое число можно разложить даже в сумму рациональных чисел.

 
 
 
 Re: Число из суммы корней
Сообщение09.06.2011, 14:57 
Аватара пользователя
Это алгебра получается уже, или арифметика? :roll:

 
 
 [ Сообщений: 24 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group