Вот что я имел ввиду:
Если предметом Вашего исследования в широком смысле является применение финслеровой геометрии в физике, то не стоит зацикливаться на пространстве БМ только на том основании, что оно имеет богатую группу конформных преобразований.
Принцип, согласно которому для математических моделей в физике наиболее пригодны такие пространства, которые обладают самыми богатыми наборами непрерывных симметрий предложен не мной, а Г.Вейлем. Я всего лишь расширил его с группы изометрических преобразований на все прочие, в том числе и конформные. Последними группы непрерывных симметрий в финслеровых пространствах размерности три и выше не ограничиваются, так что, Ваше утверждение по своей сути не верно. Мы не сосредотачиваемся на одних только конформных преобразованиях. Даже когда те образуют бесконечнопараметрическую группу, как имеет место в трех и четырехмерных пространствах Бервальда-Моора, их последствия довольно примитивны и не достаточны для полноценных физических приложений. Вся соль в более сложных и интересных группах непрерывных симметрий, включающих конформную и изометрическую в качестве подгрупп, но при этом не произвольных, а имеющих метрические инварианты, существующие только в некоторых финслеровых пространствах. Самое забавное, что некоторые мои знакомые математики и физики прекрасно понимают важность изучения именно таких самого общего вида непрерывных симметрий финслеровых пространств, но вот с их изучением и классификацией пока дела обстоят не так что бы очень. Только только кое что стало проясняться. Но то, что идти нужно именно в этом направлении, а не гнаться за очевидными связями имеющимися в некоторых геометриях с физически интерпретируемыми координатами для меня совершенно понятно. Не понятно, как находятся математики, не понимающие этого.
Физически ориентированная финслерова геометрия может включать в себя геометрию Минковского в качестве подпространства а не в качестве предела.
Во-первых, при трех и четырех измерениях финслеровы пространства с метрикой Бервальда-Моора связаны с псевдоримановыми пространствами не предельным переходом, а несколько сложнее, последние появляются, когда вместо естественных n-арных форм представления используется квадратичная метрика. Во-вторых, рассмотрение пространств, которые включают в себя пространство Минковского (четырехмерное) как подпространство автоматически приводит к увеличению числа измерений над четырьмя физически наблюдаемыми. Что прикажите делать с "лишними" размерностями? Компактифицировать как в некоторых многомерных теориях? Увольте, нет никакого желания, да и с основаниями туго..
Что касается двух измерений, то пространство Бервальда-Моора и псевдоевклидово двумерное пространство-время, просто на просто, совпадают. В данном случае это ОДНО И ТО ЖЕ, и никакого предела или подпространства тут не нужно..
Поэтому имеет смысл попытаться расширить пространство Минковского до финслерова прострнаства, в котором финслерово расстояние служило бы физическим действием, измеряемым как финслерова длина траектории частицы.
Как только Вы расширили пространство с одной метрикой до пространства с другой, в этом втором расширенном пространстве ДРУГАЯ метрика и действие в ней будет также другим. Если же Вас интересует действие в подпространстве, причем такое, что бы оно было таким же как и в пространстве Минковского, то тогда и расширять последнее не нужно. Оставайтесь себе в нем и никуда не выходите. Зачем Вам тогда финслерова геометрия?
Если взять редуцированное (до псевдоевклидовой плоскости) пространство Минковского и расширить его до 3-мерного БМ, то мы как раз и получим предмет Вашего исследования в узком понимании
Если сосредоточиться лишь на "двумерном Минковском" то никакого трехмерного финслерова брать нет нужды. В этом случае ваш "двумерный Минковский" и двумерный Бервальд-Моор изоморфны друг другу. Кстати, конформная группа у "двумерного Минковского" хоть Вы и против богатых групп симметрий, именно что, богатая так как в отличие от квадратичных пространств большей размерности тут она бесконечнопараметрическая. Кроме того, мы в отличие от Вас не ограничиваемся лишь двумерным пространством-временем, а рассматриваем, и трехмерное, и четырехмерное. В этих случаях Ваше предложение о квадратичных подпространствах для конструирования финслеровых пространств принципиально не проходит. Впрочем, некоторые физики используют именно такой подход. В частности, любители алгебры бикватернионов (кватернионов над полем комплексных чисел). В таком 8-мерном финслеровом пространстве с 4-арной метрической функцией пространство-время Минковского является четырехмерным подпространством. Работы в этом направлении идут не один десяток лет, но успехи достаточно скромные. Кстати сказать, конформная группа у этого 8-мерного финслерова пространства также неимоверно богаче, чем у 8-мернго псевдоевклидова пространства, а тем более у 4-мерного пространства Минковского.
Но тогда координаты элемента этого пространства следует интерпретировать как пространственную, временную и полевую. В такой интерпретации 3-мерного БМ Финслерова длина кривой будет функцией, формально напоминающей действие частицы.
Угу, только для этого совсем не нужно брать трехмерное финслерово пространство, достаточно оставаться в двумерном. А уж если взяли трехмерное, то действие тут будет совсем не такое, как в двумерном случае..