Пусть целевая функция и уравнения связи дважды дифференцируемы в точке, в которой выполнилось необходимое условие и дифференциалы уравнений связи линейно независимы. Если

на касательном подпространстве в этой точке является положительно определённой формой, отрицательно определённой или знакопеременной, то в этой точке соответственно условный минимум, максимум или нет экстремума. Обломны для метода Лагранжа случаи полуопределённости кв. формы, но всё же из них кое-что выцарапать можно: из положительной полуопределённости вытекает отсутствие максимума (а минимум то ли есть, то ли нету) и аналогично для отр. полуопр.
Ваш пример неудачен. Даже если не заметить очевидного геометрического решения, то уж после использования необходимого условия вряд ли потянет на достаточное, поскольку точек две, а окружность – компакт.
Ну и наконец, если всё же довести метод Лагранжа до конца, то ничего обломного для него в этой задаче нет.

. Отсюда две точки

при

. Дифференцируя уравнение связи получаем

, что в точках

даёт

, ну и

. В плюсовой точке условный минимум, в минусовой максимум.
Вот совсем простой пример, обломный для метода Лагранжа, а потому с необходимостью потребуется либо сводить к случаю одной переменной (что просто) либо пристально посмотреть на исследуемую точку, чего порой трудно добиться от студента - они готовы на любые вычисления по делу или без дела, лишь бы не думать.

.
Вот чуток пообломистей, но тоже несложный:
